메뉴 건너뛰기




Volumn 169, Issue 2, 2007, Pages 733-746

Neural network modelling and classification of lithofacies using well log data: A case study from KTB borehole site

Author keywords

ANN; Back propagation method; KTB boreholes; Lithofacies; Petrophysics; Well log

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BACK PROPAGATION; BOREHOLE LOGGING; KTB BOREHOLE; LITHOFACIES; WELL LOGGING;

EID: 34247261168     PISSN: 0956540X     EISSN: 1365246X     Source Type: Journal    
DOI: 10.1111/j.1365-246X.2007.03342.x     Document Type: Article
Times cited : (86)

References (44)
  • 1
    • 12844272223 scopus 로고    scopus 로고
    • Inversion of nuclear well-logging data using neural networks
    • Aristodemou, E., Pain, C., Oliveira, C. & Goddard, T., 2005. Inversion of nuclear well-logging data using neural networks, Geophys. Prospect, 53, 103-120.
    • (2005) Geophys. Prospect , vol.53 , pp. 103-120
    • Aristodemou, E.1    Pain, C.2    Oliveira, C.3    Goddard, T.4
  • 2
    • 0000290859 scopus 로고
    • Application of neural network to the problem of mineral identification from well logs
    • Baldwin, J., Bateman, A.R.M. & Wheatley, C.L., 1990. Application of neural network to the problem of mineral identification from well logs, The Log Analyst, 31, 279-293.
    • (1990) The Log Analyst , vol.31 , pp. 279-293
    • Baldwin, J.1    Bateman, A.R.M.2    Wheatley, C.L.3
  • 3
    • 0001160588 scopus 로고
    • What size network gives valid generalization?
    • Baum, E.B. & Haussler, D., 1989. What size network gives valid generalization?, Neural Comp, 1, 151-160.
    • (1989) Neural Comp , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 4
    • 0032925830 scopus 로고    scopus 로고
    • Inferring the lithology of borehole rocks by applying neural network classifiers to downwhole logs: An example from the Ocean Drilling Program
    • Benaouda, D., Wadge, G., Whitmarsh, R.B., Rothwell, R.G. & MacLeod, C., 1999. Inferring the lithology of borehole rocks by applying neural network classifiers to downwhole logs: An example from the Ocean Drilling Program, Geophys. J. Int., 136, 477-491.
    • (1999) Geophys. J. Int. , vol.136 , pp. 477-491
    • Benaouda, D.1    Wadge, G.2    Whitmarsh, R.B.3    Rothwell, R.G.4    MacLeod, C.5
  • 5
    • 34247254665 scopus 로고    scopus 로고
    • Petrophysical properties of the 9-km deep crustal selection at KTB
    • Berckhemer, H. et al., 1997. Petrophysical properties of the 9-km deep crustal selection at KTB, J. geophys. Res., 102(B8), 18 37-18 61.
    • (1997) J. Geophys. Res. , vol.102 , Issue.B8
    • Berckhemer, H.1
  • 7
    • 0032030370 scopus 로고    scopus 로고
    • Inversion of fracture density from field seismic velocities using artificial neural networks
    • Boadu, F., 1998. Inversion of fracture density from field seismic velocities using artificial neural networks, Geophysics, 63, 534-545.
    • (1998) Geophysics , vol.63 , pp. 534-545
    • Boadu, F.1
  • 8
    • 0023596047 scopus 로고
    • Determination of lithology from well logs by statistical analysis
    • Busch, J.M., Fortney, W.G. & Berry, L.N., 1987. Determination of lithology from well logs by statistical analysis, SPE Formation Evaluation, 2, 412-418.
    • (1987) SPE Formation Evaluation , vol.2 , pp. 412-418
    • Busch, J.M.1    Fortney, W.G.2    Berry, L.N.3
  • 9
    • 0342264727 scopus 로고    scopus 로고
    • Artificial neural networks for parameter estimation in geophysics
    • Calderon-Macias, C., Sen, M.K. & Stoffa, P.L., 2000. Artificial neural networks for parameter estimation in geophysics, Geophys. Prospect., 48, 21-47.
    • (2000) Geophys. Prospect. , vol.48 , pp. 21-47
    • Calderon-Macias, C.1    Sen, M.K.2    Stoffa, P.L.3
  • 10
    • 15944365544 scopus 로고    scopus 로고
    • Aneural network model for predicting aquifer water level elevations
    • Coppola, E.A. Jr., Rana, A.J., Poulton, M.M., Szidarovszky, F. & Uhl, V.W., 2005. Aneural network model for predicting aquifer water level elevations, Ground Water, 43(2), 231-241.
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola, E.A.1    Rana, A.J.2    Poulton, M.M.3    Szidarovszky, F.4    Uhl, V.W.5
  • 11
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko, G., 1989. Approximation by superpositions of sigmoidal function, Math. Control, Signals Systems, 2, 303-314.
    • (1989) Math. Control, Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0028792670 scopus 로고
    • Automatic picking of seismic arrivals in local earthquake data using an artificial neural network
    • Dai, H. & Macbeth, C., 1995. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network, Geophys. J. Int., 120, 758-774.
    • (1995) Geophys. J. Int. , vol.120 , pp. 758-774
    • Dai, H.1    Macbeth, C.2
  • 13
    • 0023421290 scopus 로고
    • Automatic determination of lithology from well logs
    • Delfiner, P., Peyret, O. & Serra, O., 1987. Automatic determination of lithology from well logs, SPE Formation Eval., 2, 303-310.
    • (1987) SPE Formation Eval. , vol.2 , pp. 303-310
    • Delfiner, P.1    Peyret, O.2    Serra, O.3
  • 14
    • 0033545029 scopus 로고    scopus 로고
    • An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness
    • Devilee, R.J.R., Curtis, A. & Roy-Chowdhury, K., 1999. An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness, J. geophys. Res., 104(12), 28 841-28 856.
    • (1999) J. Geophys. Res. , vol.104 , Issue.12
    • Devilee, R.J.R.1    Curtis, A.2    Roy-Chowdhury, K.3
  • 15
    • 0025684128 scopus 로고
    • Seismic discrimination with artificial neural networks: Preliminary results with regional spectral data
    • Dowla, F.U., Talor, S.R. & Anderson, R.W., 1990. Seismic discrimination with artificial neural networks: Preliminary results with regional spectral data, Bull. seism. Soc. Am., 80, 1346-1373.
    • (1990) Bull. Seism. Soc. Am. , vol.80 , pp. 1346-1373
    • Dowla, F.U.1    Talor, S.R.2    Anderson, R.W.3
  • 16
    • 0025960733 scopus 로고
    • Regional seismic event classification at the NORESS array: Seismological measurements and use of trained neural network
    • Dysart, P.S. & Pulli, J.J., 1990. Regional seismic event classification at the NORESS array: Seismological measurements and use of trained neural network, Bull. seis. Soc. Am., 80, 1910-1933.
    • (1990) Bull. Seis. Soc. Am. , vol.80 , pp. 1910-1933
    • Dysart, P.S.1    Pulli, J.J.2
  • 17
    • 14344262739 scopus 로고    scopus 로고
    • The German Continental Deep Drilling Program KTB: Overview and major results
    • Emmermann, R. & Lauterjung, J., 1997. The German Continental Deep Drilling Program KTB: Overview and major results, J. geophys. Res., 102, 18 179-18 201.
    • (1997) J. Geophys. Res. , vol.102
    • Emmermann, R.1    Lauterjung, J.2
  • 18
    • 0030922858 scopus 로고    scopus 로고
    • Neural dynamic modeling on earthquake magnitude series
    • Feng, X.-T., Seto, M. & Katsuyama, K., 1997. Neural dynamic modeling on earthquake magnitude series, Geophys. J. Int., 128, 547-556.
    • (1997) Geophys. J. Int. , vol.128 , pp. 547-556
    • Feng, X.-T.1    Seto, M.2    Katsuyama, K.3
  • 19
    • 0012178066 scopus 로고
    • The geological framework of the KTB drill site
    • in eds Emmermann, R. & Wohlenberg, J., Springer, Berlin
    • Franke, W., 1989. The geological framework of the KTB drill site, in The German Continental Deep Drilling Program (KTB), pp. 38-54, eds Emmermann, R. & Wohlenberg, J., Springer, Berlin.
    • (1989) The German Continental Deep Drilling Program (KTB) , pp. 38-54
    • Franke, W.1
  • 22
    • 0004199140 scopus 로고
    • Addison-Wesley Publishing Co., USA
    • Hecht-Nielsen, R., 1991. Neurocomputing, Addison-Wesley Publishing Co., USA.
    • (1991) Neurocomputing
    • Hecht-Nielsen, R.1
  • 23
    • 0035394572 scopus 로고    scopus 로고
    • Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study
    • Helle, H.B., Bhatt, A. & Ursin, B., 2001. Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study, Geophys. Prospect., 49, 431-444.
    • (2001) Geophys. Prospect. , vol.49 , pp. 431-444
    • Helle, H.B.1    Bhatt, A.2    Ursin, B.3
  • 24
    • 0030107415 scopus 로고    scopus 로고
    • Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada
    • Huang, Z., Shimeld, J., Williamson, M. & Katsube, J., 1996. Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada, Geophysics, 61, 422-436.
    • (1996) Geophysics , vol.61 , pp. 422-436
    • Huang, Z.1    Shimeld, J.2    Williamson, M.3    Katsube, J.4
  • 25
    • 0032458696 scopus 로고    scopus 로고
    • Variability of geophysical log data and signature of crustal heterogeneities at the KTB
    • Leonardi, S. & Kümpel, H., 1998. Variability of geophysical log data and signature of crustal heterogeneities at the KTB, Geophys. J. Int., 135, 964-974.
    • (1998) Geophys. J. Int. , vol.135 , pp. 964-974
    • Leonardi, S.1    Kümpel, H.2
  • 26
    • 0345062127 scopus 로고    scopus 로고
    • Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities
    • Leonardi, S. & Kümpel, H., 1999. Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities, Tectonophysics, 301, 173-181.
    • (1999) Tectonophysics , vol.301 , pp. 173-181
    • Leonardi, S.1    Kümpel, H.2
  • 27
    • 0023331258 scopus 로고
    • An introduction to computing with neural networks
    • Lippman, R.P., 1987. An introduction to computing with neural networks, IEEE ASSP, 4, 4-22.
    • (1987) IEEE ASSP , vol.4 , pp. 4-22
    • Lippman, R.P.1
  • 28
    • 0027334560 scopus 로고
    • First break refraction event picking and seismic data trace editing using neural networks
    • McCormack, M.D., Zaucha, D. & Dushek, D., 1993. First break refraction event picking and seismic data trace editing using neural networks, Geophysics, 58, 67-78.
    • (1993) Geophysics , vol.58 , pp. 67-78
    • McCormack, M.D.1    Zaucha, D.2    Dushek, D.3
  • 29
    • 0027071123 scopus 로고
    • Automated first arrival picking: A neural network approach
    • Murat, M.E. & Rudman, A.J., 1992. Automated first arrival picking: A neural network approach, Geophys. Prospect., 40, 587-604.
    • (1992) Geophys. Prospect. , vol.40 , pp. 587-604
    • Murat, M.E.1    Rudman, A.J.2
  • 30
    • 0031419808 scopus 로고    scopus 로고
    • Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones
    • Pechnig, P., Haverkamp, S., Wohlenberg, J., Zimmermann, G. & Burkhardt, H., 1997. Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones, J. geophys. Res., 102, 18 363-18 390.
    • (1997) J. Geophys. Res. , vol.102
    • Pechnig, P.1    Haverkamp, S.2    Wohlenberg, J.3    Zimmermann, G.4    Burkhardt, H.5
  • 31
    • 0001417448 scopus 로고
    • Acoustic character logs and their application in formation evaluation
    • Pickett, G.R., 1963. Acoustic character logs and their application in formation evaluation, J. Petr. Tech., 15, 659-667.
    • (1963) J. Petr. Tech. , vol.15 , pp. 659-667
    • Pickett, G.R.1
  • 33
    • 0025680388 scopus 로고
    • An experiment in the use of trained neural networks for regional seismic event classification
    • Pulli, J.J. & Dysart, P.S., 1990. An experiment in the use of trained neural networks for regional seismic event classification, Geophys. Res. Lett., 17, 977-980.
    • (1990) Geophys. Res. Lett. , vol.17 , pp. 977-980
    • Pulli, J.J.1    Dysart, P.S.2
  • 34
    • 0025995053 scopus 로고
    • A pattern recognition approach to geophysical inversion using neural nets
    • Raiche, A., 1991. A pattern recognition approach to geophysical inversion using neural nets, Geophys. J. Int., 105, 629-648.
    • (1991) Geophys. J. Int. , vol.105 , pp. 629-648
    • Raiche, A.1
  • 36
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and organization in the brain, Psycholog. Rev., 65, 386-408.
    • (1958) Psycholog. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 37
    • 0028262573 scopus 로고
    • Neural networks and inversion of seismic data
    • Roth, G. & Tarantola, A., 1994. Neural networks and inversion of seismic data, J. geophys. Res., 99, 6753-6768.
    • (1994) J. Geophys. Res. , vol.99 , pp. 6753-6768
    • Roth, G.1    Tarantola, A.2
  • 38
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. Learning representations by back-propagating errors, Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 39
    • 0347355325 scopus 로고    scopus 로고
    • Estimation of reservoir properties from seismic data by smooth neural networks
    • Saggaf, M.M., Okzos, M.N. & Mustafa, H.M., 2003. Estimation of reservoir properties from seismic data by smooth neural networks, Geophysics, 68, 1969-1983.
    • (2003) Geophysics , vol.68 , pp. 1969-1983
    • Saggaf, M.M.1    Okzos, M.N.2    Mustafa, H.M.3
  • 40
    • 0034233231 scopus 로고    scopus 로고
    • Neural networks in geophysical applications
    • Van der Baan, M. & Jutten, C., 2000. Neural networks in geophysical applications, Geophysics, 65, 1032-1047.
    • (2000) Geophysics , vol.65 , pp. 1032-1047
    • Van der Baan, M.1    Jutten, C.2
  • 43
    • 0036761485 scopus 로고    scopus 로고
    • Application of genetic BP network to discriminating earthquakes and explosions
    • Yin-ju, B., 2002. Application of genetic BP network to discriminating earthquakes and explosions, Acta Seism. Sinica, 15, 540-549.
    • (2002) Acta Seism. Sinica , vol.15 , pp. 540-549
    • Yin-ju, B.1
  • 44
    • 0036866630 scopus 로고    scopus 로고
    • Borehole electrical resistivity modeling using neural networks
    • Zhan, L., Poulton, M.M. & Wang, T., 2002. Borehole electrical resistivity modeling using neural networks, Geophysics, 67(6), 1790-1797.
    • (2002) Geophysics , vol.67 , Issue.6 , pp. 1790-1797
    • Zhan, L.1    Poulton, M.M.2    Wang, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.