-
1
-
-
0001797720
-
Algorithms for the least distance problem
-
P.M. Pardalos (eds). World Scientific Singapore
-
Berman, P., Kovoor, N., Pardalos, P.M.: Algorithms for the least distance problem. In: Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 33-56. World Scientific, Singapore (1993)
-
(1993)
Complexity in Numerical Optimization
, pp. 33-56
-
-
Berman, P.1
Kovoor, N.2
Pardalos, P.M.3
-
3
-
-
0021479943
-
O(n) algorithm for quadratic knapsack problems
-
DOI 10.1016/0167-6377(84)90010-5
-
P. Brucker 1984 An O(n) algorithm for quadratic knapsack problems Oper. Res. Lett. 3 163 166 0544.90086 10.1016/0167-6377(84)90010-5 761510 (Pubitemid 14671810)
-
(1984)
Operations Research Letters
, vol.3
, Issue.3
, pp. 163-166
-
-
Brucker Peter1
-
5
-
-
0034228643
-
The analysis of decomposition methods for support vector machines
-
10.1109/72.857780
-
C.-C. Chang C.-W. Hsu C.-J. Lin 2000 The analysis of decomposition methods for support vector machines IEEE Trans. Neural Netw. 11 1003 1008 10.1109/72.857780
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, pp. 1003-1008
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
6
-
-
33746932071
-
A study on SMO-type decomposition methods for support vector machines
-
DOI 10.1109/TNN.2006.875973
-
P.-H. Chen R.-E. Fan C.-J. Lin 2006 A study on SMO-type decomposition methods for support vector machines IEEE Trans. Neural Netw. 17 893 908 10.1109/TNN.2006.875973 (Pubitemid 44194150)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.4
, pp. 893-908
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
8
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
2249875
-
R.-E. Fan P.-H. Chen C.-J. Lin 2005 Working set selection using second order information for training support vector machines J. Mach. Learn. Res. 6 1889 1918 2249875
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
9
-
-
0041657519
-
Interior-point methods for massive support vector machines
-
DOI 10.1137/S1052623400374379, PII S1052623400374379
-
M.C. Ferris T.S. Munson 2003 Interior-point methods for massive support vector machines SIAM J. Optim. 13 783 804 1039.90092 10.1137/S1052623400374379 1972216 (Pubitemid 36971112)
-
(2003)
SIAM Journal on Optimization
, vol.13
, Issue.3
, pp. 783-804
-
-
Ferris, M.C.1
Munson, T.S.2
-
10
-
-
23944458072
-
Semismooth support vector machines
-
1076.90041 2085263
-
M.C. Ferris T.S. Munson 2004 Semismooth support vector machines Math. Program. 101 185 204 1076.90041 2085263
-
(2004)
Math. Program.
, vol.101
, pp. 185-204
-
-
Ferris, M.C.1
Munson, T.S.2
-
11
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
10.1162/15324430260185619
-
S. Fine K. Scheinberg 2001 Efficient SVM training using low-rank kernel representations J. Mach. Learn. Res. 2 243 264 10.1162/15324430260185619
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
13
-
-
33745784639
-
Maximum-gain working set selection for SVMs
-
2274412
-
T. Glasmachers C. Igel 2006 Maximum-gain working set selection for SVMs J. Mach. Learn. Res. 7 1437 1466 2274412
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1437-1466
-
-
Glasmachers, T.1
Igel, C.2
-
14
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
1056.68118 10.1023/A:1021877911972
-
D. Hush C. Scovel 2003 Polynomial-time decomposition algorithms for support vector machines Mach. Learn. 51 51 71 1056.68118 10.1023/A:1021877911972
-
(2003)
Mach. Learn.
, vol.51
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
15
-
-
33646392997
-
QP algorithms with guaranteed accuracy and run time for support vector machines
-
2274385
-
D. Hush P. Kelly C. Scovel I. Steinwart 2006 QP algorithms with guaranteed accuracy and run time for support vector machines J. Mach. Learn. Res. 7 733 769 2274385
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 733-769
-
-
Hush, D.1
Kelly, P.2
Scovel, C.3
Steinwart, I.4
-
16
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge
-
Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 169-184. MIT Press, Cambridge (1999)
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
17
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
DOI 10.1023/A:1012431217818
-
S.S. Keerthi E.G. Gilbert 2002 Convergence of a generalized SMO algorithm for SVM classifier design Mach. Learn. 46 351 360 0998.68109 10.1023/A:1012431217818 (Pubitemid 34129975)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
18
-
-
0013376452
-
On the role of the threshold parameter in SVM training algorithm
-
Department of Mathematical and Production Engineering, National University of Singapore, Singapore
-
Keerthi, S.S., Ong, C.J.: On the role of the threshold parameter in SVM training algorithm. Technical Report CD-00-09, Department of Mathematical and Production Engineering, National University of Singapore, Singapore (2000)
-
(2000)
Technical Report CD-00-09
-
-
Keerthi, S.S.1
Ong, C.J.2
-
19
-
-
0037313407
-
SMO algorithm for least-squares SVM formulations
-
DOI 10.1162/089976603762553013
-
S.S. Keerthi S.K. Shevade 2003 SMO algorithm for least-squares SVM formulations Neural Comput. 15 487 507 1047.68100 10.1162/089976603762553013 (Pubitemid 37049831)
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
-
20
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
DOI 10.1162/089976601300014493
-
S.S. Keerthi S.K. Shevade C. Bhattacharyya K.R.K. Murthy 2001 Improvements to Platt's SMO algorithm for SVM classifier design Neural Comput. 13 637 649 1085.68629 10.1162/089976601300014493 (Pubitemid 33595014)
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
21
-
-
36049044098
-
On linear time algorithms for the continuous quadratic knapsack problem
-
1145.90077 10.1007/s10957-007-9259-0 2332481
-
K.C. Kiwiel 2007 On linear time algorithms for the continuous quadratic knapsack problem J. Optim. Theory Appl. 134 549 554 1145.90077 10.1007/s10957-007-9259-0 2332481
-
(2007)
J. Optim. Theory Appl.
, vol.134
, pp. 549-554
-
-
Kiwiel, K.C.1
-
22
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
DOI 10.1109/72.963765, PII S1045922701064566
-
C.-J. Lin 2001 On the convergence of the decomposition method for support vector machines IEEE Trans. Neural Netw. 12 1288 1298 10.1109/72.963765 (Pubitemid 33106034)
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.-J.1
-
23
-
-
0038178786
-
Linear convergence of a decomposition method for support vector machines
-
Department of Computer Science and Information Engineering, Taiwan University, Taipei, Taiwan
-
Lin, C.-J.: Linear convergence of a decomposition method for support vector machines. Technical Report, Department of Computer Science and Information Engineering, Taiwan University, Taipei, Taiwan (2001)
-
(2001)
Technical Report
-
-
Lin, C.-J.1
-
24
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
DOI 10.1109/72.977319, PII S1045922702009438
-
C.-J. Lin 2002 Asymptotic convergence of an SMO algorithm without any assumptions IEEE Trans. Neural Netw. 13 248 250 10.1109/72.977319 (Pubitemid 34236853)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 248-250
-
-
Lin, C.-J.1
-
25
-
-
62949178474
-
A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds
-
DIS-Università di Roma "La Sapienza", Rome, January To appear in J. Optim. Theory Appl.
-
Lin, C.-J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds. Technical Report, DIS-Università di Roma "La Sapienza", Rome, January (2007). To appear in J. Optim. Theory Appl.
-
(2007)
Technical Report
-
-
Lin, C.-J.1
Lucidi, S.2
Palagi, L.3
Risi, A.4
Sciandrone, M.5
-
27
-
-
26944489027
-
General polynomial time decomposition algorithms
-
Springer Berlin
-
List, N., Simon, H.U.: General polynomial time decomposition algorithms. In: Lecture Notes in Computer Science, vol. 3559, pp. 308-322. Springer, Berlin (2005)
-
(2005)
Lecture Notes in Computer Science
, vol.3559
, pp. 308-322
-
-
List, N.1
Simon, H.U.2
-
28
-
-
67649311801
-
On the convergence of hybrid decomposition methods for SVM training
-
DIS-Università di Roma "La Sapienza", Rome, July 2006. Submitted to IEEE Trans. Neural Netw.
-
Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: On the convergence of hybrid decomposition methods for SVM training. Technical Report, DIS-Università di Roma "La Sapienza", Rome, July 2006. Submitted to IEEE Trans. Neural Netw.
-
Technical Report
-
-
Lucidi, S.1
Palagi, L.2
Risi, A.3
Sciandrone, M.4
-
29
-
-
0003095772
-
Error bounds and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem
-
0777.49010 10.1137/0802004 1147882
-
Z.-Q. Luo P. Tseng 1992 Error bounds and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem SIAM J. Optim. 2 43 54 0777.49010 10.1137/0802004 1147882
-
(1992)
SIAM J. Optim.
, vol.2
, pp. 43-54
-
-
Luo, Z.-Q.1
Tseng, P.2
-
30
-
-
21344480786
-
Error bounds and convergence analysis of feasible descent methods: A general approach
-
10.1007/BF02096261 1260016
-
Z.-Q. Luo P. Tseng 1993 Error bounds and convergence analysis of feasible descent methods: a general approach Ann. Oper. Res. 46 157 178 10.1007/BF02096261 1260016
-
(1993)
Ann. Oper. Res.
, vol.46
, pp. 157-178
-
-
Luo, Z.-Q.1
Tseng, P.2
-
31
-
-
0032594961
-
Successive overrelaxation for support vector machines
-
10.1109/72.788643
-
O.L. Mangasarian D.R. Musicant 1999 Successive overrelaxation for support vector machines IEEE Trans. Neural Netw. 10 1032 1037 10.1109/72.788643
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, pp. 1032-1037
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
35
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge
-
Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 185-208. MIT Press, Cambridge (1999)
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
39
-
-
0004296379
-
Support vector machine-reference manual
-
Department of Computer Science, Royal Holloway, University of London, Egham, UK
-
Saunders, C., Stitson, M.O., Weston, J., Bottou, L., Schölkopf., B., Smola, A.J.: Support vector machine-reference manual. Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London, Egham, UK (1998)
-
(1998)
Report CSD-TR-98-03
-
-
Saunders, C.1
-
40
-
-
33745798002
-
An efficient implementation of an active set method for SVM
-
2274439
-
K. Scheinberg 2006 An efficient implementation of an active set method for SVM J. Mach. Learn. Res. 7 2237 2257 2274439
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2237-2257
-
-
Scheinberg, K.1
-
43
-
-
0037695279
-
-
World Scientific Singapore 1017.93004 10.1142/9789812776655
-
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
44
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
1166.90016 10.1007/s10107-007-0170-0 2421312
-
P. Tseng S. Yun 2009 A coordinate gradient descent method for nonsmooth separable minimization Math. Program. B 117 387 423 1166.90016 10.1007/s10107-007-0170-0 2421312
-
(2009)
Math. Program. B
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
|