메뉴 건너뛰기




Volumn 47, Issue 2, 2010, Pages 179-206

A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training

Author keywords

Conformal realization; Continuous quadratic knapsack problem; Coordinate gradient descent; Error bound; Global convergence; Linear constraints; Linear convergence rate; Quadratic program; Support vector machine

Indexed keywords

CONFORMAL REALIZATION; ERROR BOUND; GLOBAL CONVERGENCE; GRADIENT DESCENT; LINEAR CONSTRAINTS; LINEAR CONVERGENCE RATE; QUADRATIC KNAPSACK PROBLEMS; QUADRATIC PROGRAMS;

EID: 77956736675     PISSN: 09266003     EISSN: 15732894     Source Type: Journal    
DOI: 10.1007/s10589-008-9215-4     Document Type: Article
Times cited : (52)

References (45)
  • 1
    • 0001797720 scopus 로고
    • Algorithms for the least distance problem
    • P.M. Pardalos (eds). World Scientific Singapore
    • Berman, P., Kovoor, N., Pardalos, P.M.: Algorithms for the least distance problem. In: Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 33-56. World Scientific, Singapore (1993)
    • (1993) Complexity in Numerical Optimization , pp. 33-56
    • Berman, P.1    Kovoor, N.2    Pardalos, P.M.3
  • 3
    • 0021479943 scopus 로고
    • O(n) algorithm for quadratic knapsack problems
    • DOI 10.1016/0167-6377(84)90010-5
    • P. Brucker 1984 An O(n) algorithm for quadratic knapsack problems Oper. Res. Lett. 3 163 166 0544.90086 10.1016/0167-6377(84)90010-5 761510 (Pubitemid 14671810)
    • (1984) Operations Research Letters , vol.3 , Issue.3 , pp. 163-166
    • Brucker Peter1
  • 5
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • 10.1109/72.857780
    • C.-C. Chang C.-W. Hsu C.-J. Lin 2000 The analysis of decomposition methods for support vector machines IEEE Trans. Neural Netw. 11 1003 1008 10.1109/72.857780
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 1003-1008
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 6
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • DOI 10.1109/TNN.2006.875973
    • P.-H. Chen R.-E. Fan C.-J. Lin 2006 A study on SMO-type decomposition methods for support vector machines IEEE Trans. Neural Netw. 17 893 908 10.1109/TNN.2006.875973 (Pubitemid 44194150)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 8
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • 2249875
    • R.-E. Fan P.-H. Chen C.-J. Lin 2005 Working set selection using second order information for training support vector machines J. Mach. Learn. Res. 6 1889 1918 2249875
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 9
    • 0041657519 scopus 로고    scopus 로고
    • Interior-point methods for massive support vector machines
    • DOI 10.1137/S1052623400374379, PII S1052623400374379
    • M.C. Ferris T.S. Munson 2003 Interior-point methods for massive support vector machines SIAM J. Optim. 13 783 804 1039.90092 10.1137/S1052623400374379 1972216 (Pubitemid 36971112)
    • (2003) SIAM Journal on Optimization , vol.13 , Issue.3 , pp. 783-804
    • Ferris, M.C.1    Munson, T.S.2
  • 10
    • 23944458072 scopus 로고    scopus 로고
    • Semismooth support vector machines
    • 1076.90041 2085263
    • M.C. Ferris T.S. Munson 2004 Semismooth support vector machines Math. Program. 101 185 204 1076.90041 2085263
    • (2004) Math. Program. , vol.101 , pp. 185-204
    • Ferris, M.C.1    Munson, T.S.2
  • 11
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • 10.1162/15324430260185619
    • S. Fine K. Scheinberg 2001 Efficient SVM training using low-rank kernel representations J. Mach. Learn. Res. 2 243 264 10.1162/15324430260185619
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 13
    • 33745784639 scopus 로고    scopus 로고
    • Maximum-gain working set selection for SVMs
    • 2274412
    • T. Glasmachers C. Igel 2006 Maximum-gain working set selection for SVMs J. Mach. Learn. Res. 7 1437 1466 2274412
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1437-1466
    • Glasmachers, T.1    Igel, C.2
  • 14
    • 0037399781 scopus 로고    scopus 로고
    • Polynomial-time decomposition algorithms for support vector machines
    • 1056.68118 10.1023/A:1021877911972
    • D. Hush C. Scovel 2003 Polynomial-time decomposition algorithms for support vector machines Mach. Learn. 51 51 71 1056.68118 10.1023/A:1021877911972
    • (2003) Mach. Learn. , vol.51 , pp. 51-71
    • Hush, D.1    Scovel, C.2
  • 15
    • 33646392997 scopus 로고    scopus 로고
    • QP algorithms with guaranteed accuracy and run time for support vector machines
    • 2274385
    • D. Hush P. Kelly C. Scovel I. Steinwart 2006 QP algorithms with guaranteed accuracy and run time for support vector machines J. Mach. Learn. Res. 7 733 769 2274385
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 733-769
    • Hush, D.1    Kelly, P.2    Scovel, C.3    Steinwart, I.4
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge
    • Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 169-184. MIT Press, Cambridge (1999)
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 17
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • DOI 10.1023/A:1012431217818
    • S.S. Keerthi E.G. Gilbert 2002 Convergence of a generalized SMO algorithm for SVM classifier design Mach. Learn. 46 351 360 0998.68109 10.1023/A:1012431217818 (Pubitemid 34129975)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 18
    • 0013376452 scopus 로고    scopus 로고
    • On the role of the threshold parameter in SVM training algorithm
    • Department of Mathematical and Production Engineering, National University of Singapore, Singapore
    • Keerthi, S.S., Ong, C.J.: On the role of the threshold parameter in SVM training algorithm. Technical Report CD-00-09, Department of Mathematical and Production Engineering, National University of Singapore, Singapore (2000)
    • (2000) Technical Report CD-00-09
    • Keerthi, S.S.1    Ong, C.J.2
  • 19
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least-squares SVM formulations
    • DOI 10.1162/089976603762553013
    • S.S. Keerthi S.K. Shevade 2003 SMO algorithm for least-squares SVM formulations Neural Comput. 15 487 507 1047.68100 10.1162/089976603762553013 (Pubitemid 37049831)
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 487-507
    • Keerthi, S.S.1    Shevade, S.K.2
  • 20
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • DOI 10.1162/089976601300014493
    • S.S. Keerthi S.K. Shevade C. Bhattacharyya K.R.K. Murthy 2001 Improvements to Platt's SMO algorithm for SVM classifier design Neural Comput. 13 637 649 1085.68629 10.1162/089976601300014493 (Pubitemid 33595014)
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 21
    • 36049044098 scopus 로고    scopus 로고
    • On linear time algorithms for the continuous quadratic knapsack problem
    • 1145.90077 10.1007/s10957-007-9259-0 2332481
    • K.C. Kiwiel 2007 On linear time algorithms for the continuous quadratic knapsack problem J. Optim. Theory Appl. 134 549 554 1145.90077 10.1007/s10957-007-9259-0 2332481
    • (2007) J. Optim. Theory Appl. , vol.134 , pp. 549-554
    • Kiwiel, K.C.1
  • 22
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • DOI 10.1109/72.963765, PII S1045922701064566
    • C.-J. Lin 2001 On the convergence of the decomposition method for support vector machines IEEE Trans. Neural Netw. 12 1288 1298 10.1109/72.963765 (Pubitemid 33106034)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 23
    • 0038178786 scopus 로고    scopus 로고
    • Linear convergence of a decomposition method for support vector machines
    • Department of Computer Science and Information Engineering, Taiwan University, Taipei, Taiwan
    • Lin, C.-J.: Linear convergence of a decomposition method for support vector machines. Technical Report, Department of Computer Science and Information Engineering, Taiwan University, Taipei, Taiwan (2001)
    • (2001) Technical Report
    • Lin, C.-J.1
  • 24
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • DOI 10.1109/72.977319, PII S1045922702009438
    • C.-J. Lin 2002 Asymptotic convergence of an SMO algorithm without any assumptions IEEE Trans. Neural Netw. 13 248 250 10.1109/72.977319 (Pubitemid 34236853)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 248-250
    • Lin, C.-J.1
  • 25
    • 62949178474 scopus 로고    scopus 로고
    • A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds
    • DIS-Università di Roma "La Sapienza", Rome, January To appear in J. Optim. Theory Appl.
    • Lin, C.-J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds. Technical Report, DIS-Università di Roma "La Sapienza", Rome, January (2007). To appear in J. Optim. Theory Appl.
    • (2007) Technical Report
    • Lin, C.-J.1    Lucidi, S.2    Palagi, L.3    Risi, A.4    Sciandrone, M.5
  • 27
    • 26944489027 scopus 로고    scopus 로고
    • General polynomial time decomposition algorithms
    • Springer Berlin
    • List, N., Simon, H.U.: General polynomial time decomposition algorithms. In: Lecture Notes in Computer Science, vol. 3559, pp. 308-322. Springer, Berlin (2005)
    • (2005) Lecture Notes in Computer Science , vol.3559 , pp. 308-322
    • List, N.1    Simon, H.U.2
  • 28
    • 67649311801 scopus 로고    scopus 로고
    • On the convergence of hybrid decomposition methods for SVM training
    • DIS-Università di Roma "La Sapienza", Rome, July 2006. Submitted to IEEE Trans. Neural Netw.
    • Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: On the convergence of hybrid decomposition methods for SVM training. Technical Report, DIS-Università di Roma "La Sapienza", Rome, July 2006. Submitted to IEEE Trans. Neural Netw.
    • Technical Report
    • Lucidi, S.1    Palagi, L.2    Risi, A.3    Sciandrone, M.4
  • 29
    • 0003095772 scopus 로고
    • Error bounds and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem
    • 0777.49010 10.1137/0802004 1147882
    • Z.-Q. Luo P. Tseng 1992 Error bounds and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem SIAM J. Optim. 2 43 54 0777.49010 10.1137/0802004 1147882
    • (1992) SIAM J. Optim. , vol.2 , pp. 43-54
    • Luo, Z.-Q.1    Tseng, P.2
  • 30
    • 21344480786 scopus 로고
    • Error bounds and convergence analysis of feasible descent methods: A general approach
    • 10.1007/BF02096261 1260016
    • Z.-Q. Luo P. Tseng 1993 Error bounds and convergence analysis of feasible descent methods: a general approach Ann. Oper. Res. 46 157 178 10.1007/BF02096261 1260016
    • (1993) Ann. Oper. Res. , vol.46 , pp. 157-178
    • Luo, Z.-Q.1    Tseng, P.2
  • 31
    • 0032594961 scopus 로고    scopus 로고
    • Successive overrelaxation for support vector machines
    • 10.1109/72.788643
    • O.L. Mangasarian D.R. Musicant 1999 Successive overrelaxation for support vector machines IEEE Trans. Neural Netw. 10 1032 1037 10.1109/72.788643
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1032-1037
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 33
    • 0031334889 scopus 로고    scopus 로고
    • Improved training algorithm for support vector machines
    • Osuna, E., Freund, R., Girosi, F.: Improved training algorithm for support vector machines. In: Proc. IEEE NNSP'97 (1997)
    • (1997) Proc. IEEE NNSP'97
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 35
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • B. Schölkopf C.J.C. Burges A.J. Smola (eds). MIT Press Cambridge
    • Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 185-208. MIT Press, Cambridge (1999)
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 39
    • 0004296379 scopus 로고    scopus 로고
    • Support vector machine-reference manual
    • Department of Computer Science, Royal Holloway, University of London, Egham, UK
    • Saunders, C., Stitson, M.O., Weston, J., Bottou, L., Schölkopf., B., Smola, A.J.: Support vector machine-reference manual. Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London, Egham, UK (1998)
    • (1998) Report CSD-TR-98-03
    • Saunders, C.1
  • 40
    • 33745798002 scopus 로고    scopus 로고
    • An efficient implementation of an active set method for SVM
    • 2274439
    • K. Scheinberg 2006 An efficient implementation of an active set method for SVM J. Mach. Learn. Res. 7 2237 2257 2274439
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2237-2257
    • Scheinberg, K.1
  • 44
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • 1166.90016 10.1007/s10107-007-0170-0 2421312
    • P. Tseng S. Yun 2009 A coordinate gradient descent method for nonsmooth separable minimization Math. Program. B 117 387 423 1166.90016 10.1007/s10107-007-0170-0 2421312
    • (2009) Math. Program. B , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.