메뉴 건너뛰기




Volumn 20, Issue 2-3, 2005, Pages 317-334

On the convergence of a modified version of SVMlight algorithm

Author keywords

Decomposition methods; Proximal point; Support vector machines; SVMlight algorithm

Indexed keywords

COMPUTATIONAL COMPLEXITY; HEURISTIC METHODS; LEARNING SYSTEMS; OPTIMIZATION; PATTERN RECOGNITION; QUADRATIC PROGRAMMING; SET THEORY;

EID: 12444281083     PISSN: 10556788     EISSN: None     Source Type: Journal    
DOI: 10.1080/10556780512331318209     Document Type: Conference Paper
Times cited : (43)

References (16)
  • 1
    • 34249753618 scopus 로고
    • Support-vector network
    • Cortes, C. and Vapnik, V., 1995, Support-Vector network. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 3
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • C.B.B Schölkopf and A. Smola (Eds) (MA: MIT Press)
    • Joachims, T., 1998, Making large scale SVM learning practical. In: C.B.B Schölkopf and A. Smola (Eds) Advances in Kernel Methods-Support Vector Learning (MA: MIT Press).
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Joachims, T.1
  • 4
    • 12444281763 scopus 로고    scopus 로고
    • Convergent decomposition techniques for linearly constrained optimization
    • Department of Computer and System Sciences, University of Rome 'La Sapienza', Rome, Italy
    • Lucidi, S., Palagi, L. and Sciandrone, M., 2002, Convergent decomposition techniques for linearly constrained optimization. Tech. Rep. 16-02, Department of Computer and System Sciences, University of Rome 'La Sapienza', Rome, Italy.
    • (2002) Tech. Rep. , vol.16 , Issue.2
    • Lucidi, S.1    Palagi, L.2    Sciandrone, M.3
  • 5
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • C.B.B. Schölkopf and A. Smola (Eds) Cambridge, MA: MIT Press
    • Platt, J.C. 1998, Fast training of support vector machines using sequential minimal optimization. In: C.B.B. Schölkopf and A. Smola (Eds) Advances Kernel Methods-Support Vector Learning (Cambridge, MA: MIT Press).
    • (1998) Advances Kernel Methods-support Vector Learning
    • Platt, J.C.1
  • 7
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM
    • Keerthi, S. and Gilbert, E., 2002, Convergence of a generalized SMO algorithm for SVM. Machine Learning, 46, 351-360.
    • (2002) Machine Learning , vol.46 , pp. 351-360
    • Keerthi, S.1    Gilbert, E.2
  • 8
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin, C.-J., 2001, On the convergence of the decomposition method for Support Vector Machines. IEEE Transactions on Neural Networks, 12, 1288-1298.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.-J.1
  • 9
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Lin, C.-J., 2002, Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13, 248-250.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 248-250
    • Lin, C.-J.1
  • 10
    • 0032665409 scopus 로고    scopus 로고
    • Globally convergent block-coordinate techniques for unconstrained optimization
    • Grippo, L. and Sciandrone, M., 1999, Globally convergent block-coordinate techniques for unconstrained optimization. Optimization Methods and Software, 10, 587-637.
    • (1999) Optimization Methods and Software , vol.10 , pp. 587-637
    • Grippo, L.1    Sciandrone, M.2
  • 11
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • Grippo, L. and Sciandrone, M., 2000, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters, 26, 127-136.
    • (2000) Operations Research Letters , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 13
    • 0036737295 scopus 로고    scopus 로고
    • A formal analysis of stopping criteria of decomposition methods for support vector machines
    • Lin, C.-J., 2002, A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 13, 1045-1052.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 1045-1052
    • Lin, C.-J.1
  • 14
    • 0034228643 scopus 로고    scopus 로고
    • The anlysis of decomposition methods for support vector machines
    • Chang, C.-C., Hsu, C.-W. and Lin, C.-J., 2000, The anlysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11, 1003-1008.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 1003-1008
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 15
    • 0026881095 scopus 로고
    • Asymptotic properties of the fenchel dual functional and applications to decomposition problems
    • Auslender, A., 1992, Asymptotic properties of the fenchel dual functional and applications to decomposition problems. Journal of Optimisation Theory and Applications, 73, 427-449.
    • (1992) Journal of Optimisation Theory and Applications , vol.73 , pp. 427-449
    • Auslender, A.1
  • 16
    • 0004152321 scopus 로고
    • Partial proximal minimization algorithm for convex programming
    • Bertsekas, D. and Tseng, P., 1994, Partial proximal minimization algorithm for convex programming. SIAM Journal of Optimization, 4, 551-572.
    • (1994) SIAM Journal of Optimization , vol.4 , pp. 551-572
    • Bertsekas, D.1    Tseng, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.