메뉴 건너뛰기




Volumn 51, Issue 1, 2003, Pages 51-71

Polynomial-time decomposition algorithms for support vector machines

Author keywords

Decomposition algorithms; Polynomial time algorithms; Support vector machines

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; LEARNING ALGORITHMS; POLYNOMIALS; VECTORS;

EID: 0037399781     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1021877911972     Document Type: Article
Times cited : (63)

References (14)
  • 2
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • Chang, C., Hsu, C., & Lin, C. (2000). The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11:4, 1003-1008.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.4 , pp. 1003-1008
    • Chang, C.1    Hsu, C.2    Lin, C.3
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0018443274 scopus 로고
    • Rates of convergence for conditional gradient algorithms near singular and non-singular extremals
    • Dunn, J. (1979). Rates of convergence for conditional gradient algorithms near singular and non-singular extremals. SIAM J. Control and Optimization, 17:2, 187-211.
    • (1979) SIAM J. Control and Optimization , vol.17 , Issue.2 , pp. 187-211
    • Dunn, J.1
  • 6
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • In B. Scholkopf, C. Burges, & A. Smola (Eds.); Cambridge, MA: MIT Press
    • Joachims, T. (1998). Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning. Cambridge, MA: MIT Press.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 7
    • 0013372215 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • Technical Report CD-00-01, Control Division Technical Report, Department of Mechanical and Production Engineering, National University of Singapor Also in Machine Learning, to appear
    • Keerthi, S., & Gilbert, E. (2000). Convergence of a generalized SMO algorithm for SVM classifier design. Technical Report CD-00-01, Control Division Technical Report, Department of Mechanical and Production Engineering, National University of Singapor Also in Machine Learning, to appear.
    • (2000)
    • Keerthi, S.1    Gilbert, E.2
  • 8
    • 0013376452 scopus 로고    scopus 로고
    • On the role of the threshold parameter in SVM training algorithms
    • Technical Report CD-00-09, Control Division Technical Report, Department of Mechanical and Production Engineering National University of Singapore
    • Keerthi, S., & Ong, C. (2000). On the role of the threshold parameter in SVM training algorithms. Technical Report CD-00-09, Control Division Technical Report, Department of Mechanical and Production Engineering National University of Singapore.
    • (2000)
    • Keerthi, S.1    Ong, C.2
  • 9
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13, 637-649.
    • (2001) Neural Computation , vol.13 , pp. 637-649
    • Keerthi, S.1    Shevade, S.2    Bhattacharyya, C.3    Murthy, K.4
  • 10
    • 0003984755 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.; to appear
    • Lin, C.-J. (2000) On the convergence of the decomposition method for support vector machines. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. Also in IEEE Trans. Neural Networks, to appear.
    • (2000) IEEE Trans. Neural Networks
    • Lin, C.-J.1
  • 11
    • 0003425662 scopus 로고    scopus 로고
    • Support vector machines: Training and applications
    • Technical Report AIM-1602, MIT
    • Osuna, E., Freund, R., & Girosi, F. (1997). Support vector machines: Training and applications. Technical Report AIM-1602, MIT.
    • (1997)
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 12
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • In B. Scholkopf, C. Burges, & A. Smola (Eds.); Cambridge, MA: MIT Press
    • Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In B. Scholkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 41-64). Cambridge, MA: MIT Press.
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 41-64
    • Platt, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.