메뉴 건너뛰기




Volumn 3559 LNAI, Issue , 2005, Pages 308-322

General polynomial time decomposition algorithms

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINT THEORY; LEARNING SYSTEMS; OPTIMIZATION;

EID: 26944489027     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11503415_21     Document Type: Conference Paper
Times cited : (15)

References (30)
  • 3
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11(4):248-250, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.4 , pp. 248-250
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 6
    • 0018443274 scopus 로고
    • Rates of convergence for conditional gradient algorithms near singular and non-singular extremals
    • J. Dunn. Rates of convergence for conditional gradient algorithms near singular and non-singular extremals. SIAM J. Control and Optimization, 17(2):187-211, 1979.
    • (1979) SIAM J. Control and Optimization , vol.17 , Issue.2 , pp. 187-211
    • Dunn, J.1
  • 7
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • Chih-Wei Hsu and Chih-Jen Lin. A simple decomposition method for support vector machines. Machine Learning, 46(1-3):291-314, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 8
    • 0037399781 scopus 로고    scopus 로고
    • Polynomial-time decomposition algorithms for support vector machines
    • Don Hush and Clint Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51(1):51-71, 2003.
    • (2003) Machine Learning , vol.51 , Issue.1 , pp. 51-71
    • Hush, D.1    Scovel, C.2
  • 9
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, . MIT Press
    • Thorsten Joachims. Making large scale SVM learning practical. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184. MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 10
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • S. Sathiya Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46(1-3):351-360, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 12
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3):637-649, 2001.
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 13
    • 0036158636 scopus 로고    scopus 로고
    • Feasible direction decomposition algorithms for training support vector machines
    • Pavel Laskov. Feasible direction decomposition algorithms for training support vector machines. Machine Learning, 46(1-3):315-349, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 315-349
    • Laskov, P.1
  • 14
    • 0040081684 scopus 로고    scopus 로고
    • A note on the decomposition methods for support vector regression
    • Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin. A note on the decomposition methods for support vector regression. Neural Computation, 14(6):1267-1281, 2002.
    • (2002) Neural Computation , vol.14 , Issue.6 , pp. 1267-1281
    • Liao, S.-P.1    Lin, H.-T.2    Lin, C.-J.3
  • 16
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Chih-Jen Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12(6):1288-1298, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 17
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13(1):248-250, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 248-250
    • Lin, C.-J.1
  • 18
    • 0036737295 scopus 로고    scopus 로고
    • A formal analysis of stopping criteria of decomposition methods for support vector machines
    • Chih-Jen Lin. A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 13(5):1045-1052, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1045-1052
    • Lin, C.-J.1
  • 24
    • 0020845843 scopus 로고
    • Linear programming in linear time when the dimension is fixed
    • Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the Association on Computing Machinery, 31(1):114-127, 1984.
    • (1984) Journal of the Association on Computing Machinery , vol.31 , Issue.1 , pp. 114-127
    • Megiddo, N.1
  • 26
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, . MIT Press
    • John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 27
    • 0004296379 scopus 로고    scopus 로고
    • Support vector machine reference manual
    • Royal Holloway, University of London, Egham, UK
    • Craig Saunders, Mark O. Stitson, Jason Weston, Leon Bottou, Bernhard Schölkopf, and Alexander J. Smola. Support vector machine reference manual. Technical Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK, 1998.
    • (1998) Technical Report , vol.CSD-TR-98-03
    • Saunders, C.1    Stitson, M.O.2    Weston, J.3    Bottou, L.4    Schölkopf, B.5    Smola, A.J.6
  • 29
    • 0003991806 scopus 로고    scopus 로고
    • Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons
    • Vladimir Vapnik. Statistical Learning Theory. Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons, 1998.
    • (1998) Statistical Learning Theory
    • Vapnik, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.