-
3
-
-
0034228643
-
The analysis of decomposition methods for support vector machines
-
Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11(4):248-250, 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.4
, pp. 248-250
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
6
-
-
0018443274
-
Rates of convergence for conditional gradient algorithms near singular and non-singular extremals
-
J. Dunn. Rates of convergence for conditional gradient algorithms near singular and non-singular extremals. SIAM J. Control and Optimization, 17(2):187-211, 1979.
-
(1979)
SIAM J. Control and Optimization
, vol.17
, Issue.2
, pp. 187-211
-
-
Dunn, J.1
-
7
-
-
0036158552
-
A simple decomposition method for support vector machines
-
Chih-Wei Hsu and Chih-Jen Lin. A simple decomposition method for support vector machines. Machine Learning, 46(1-3):291-314, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 291-314
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
8
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
Don Hush and Clint Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51(1):51-71, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.1
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
9
-
-
0002714543
-
Making large scale SVM learning practical
-
Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, . MIT Press
-
Thorsten Joachims. Making large scale SVM learning practical. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184. MIT Press, 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
10
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
S. Sathiya Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46(1-3):351-360, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
11
-
-
0034271493
-
Improvements to SMO algorithm for SVM regression
-
S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and K. R. K. Murthy. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5):1188-1193, 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
12
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3):637-649, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
13
-
-
0036158636
-
Feasible direction decomposition algorithms for training support vector machines
-
Pavel Laskov. Feasible direction decomposition algorithms for training support vector machines. Machine Learning, 46(1-3):315-349, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 315-349
-
-
Laskov, P.1
-
14
-
-
0040081684
-
A note on the decomposition methods for support vector regression
-
Shuo-Peng Liao, Hsuan-Tien Lin, and Chih-Jen Lin. A note on the decomposition methods for support vector regression. Neural Computation, 14(6):1267-1281, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.6
, pp. 1267-1281
-
-
Liao, S.-P.1
Lin, H.-T.2
Lin, C.-J.3
-
16
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Chih-Jen Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12(6):1288-1298, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.-J.1
-
17
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13(1):248-250, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 248-250
-
-
Lin, C.-J.1
-
18
-
-
0036737295
-
A formal analysis of stopping criteria of decomposition methods for support vector machines
-
Chih-Jen Lin. A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 13(5):1045-1052, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.5
, pp. 1045-1052
-
-
Lin, C.-J.1
-
24
-
-
0020845843
-
Linear programming in linear time when the dimension is fixed
-
Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the Association on Computing Machinery, 31(1):114-127, 1984.
-
(1984)
Journal of the Association on Computing Machinery
, vol.31
, Issue.1
, pp. 114-127
-
-
Megiddo, N.1
-
26
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, . MIT Press
-
John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
27
-
-
0004296379
-
Support vector machine reference manual
-
Royal Holloway, University of London, Egham, UK
-
Craig Saunders, Mark O. Stitson, Jason Weston, Leon Bottou, Bernhard Schölkopf, and Alexander J. Smola. Support vector machine reference manual. Technical Report CSD-TR-98-03, Royal Holloway, University of London, Egham, UK, 1998.
-
(1998)
Technical Report
, vol.CSD-TR-98-03
-
-
Saunders, C.1
Stitson, M.O.2
Weston, J.3
Bottou, L.4
Schölkopf, B.5
Smola, A.J.6
-
29
-
-
0003991806
-
-
Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons
-
Vladimir Vapnik. Statistical Learning Theory. Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons, 1998.
-
(1998)
Statistical Learning Theory
-
-
Vapnik, V.1
|