메뉴 건너뛰기




Volumn 19, Issue 9, 2008, Pages 1652-1658

A fast and scalable recurrent neural network based on stochastic meta descent

Author keywords

Constrained optimization; Real time recurrent learning RTRL); Recurrent neural networks (RNNs)

Indexed keywords

CONSTRAINED OPTIMIZATION; GRADIENT METHODS; LEARNING ALGORITHMS; STOCHASTIC SYSTEMS;

EID: 54549105599     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2008.2000838     Document Type: Article
Times cited : (11)

References (21)
  • 1
    • 0025418210 scopus 로고
    • Neural networks for self-learning control system
    • Apr
    • D. Nguyen and B. Widrow, "Neural networks for self-learning control system," IEEE Control Syst. Mag., vol. 10, no. 3, pp. 18-23, Apr. 1990.
    • (1990) IEEE Control Syst. Mag , vol.10 , Issue.3 , pp. 18-23
    • Nguyen, D.1    Widrow, B.2
  • 3
    • 34547133026 scopus 로고    scopus 로고
    • Training recurrent neurocontrollers for real-time applications
    • Jul
    • D. V. Prokhorov, "Training recurrent neurocontrollers for real-time applications," IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1003-1015, Jul. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.4 , pp. 1003-1015
    • Prokhorov, D.V.1
  • 4
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., no. 1, pp. 270-280, 1989.
    • (1989) Neural Comput , Issue.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 5
    • 0012061123 scopus 로고
    • A subgrouping strategy that reduces complexity and speeds up learning in recurrent networks
    • D. Zipser, "A subgrouping strategy that reduces complexity and speeds up learning in recurrent networks," Neural Comput., no. 1, pp. 552-558, 1989.
    • (1989) Neural Comput , Issue.1 , pp. 552-558
    • Zipser, D.1
  • 7
    • 33846085516 scopus 로고    scopus 로고
    • Backpropagation algorithms for abroad class of dynamic networks
    • Jan
    • O. D. Jesus and M. T. Hagan, "Backpropagation algorithms for abroad class of dynamic networks," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 14-27, Jan. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.1 , pp. 14-27
    • Jesus, O.D.1    Hagan, M.T.2
  • 8
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks," Neural Comput., vol. 4, pp. 243-248, 1992.
    • (1992) Neural Comput , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 9
    • 0000651310 scopus 로고
    • Green's function method for fast on-line learning algorithm of recurrent neural networks
    • G.-Z. Sun, H.-H. Chen, and Y.-C. Lee, "Green's function method for fast on-line learning algorithm of recurrent neural networks," in Proc. Neural Inf. Process. Syst., 1991, pp. 333-340.
    • (1991) Proc. Neural Inf. Process. Syst , pp. 333-340
    • Sun, G.-Z.1    Chen, H.-H.2    Lee, Y.-C.3
  • 10
    • 17744383055 scopus 로고    scopus 로고
    • Memory efficient BFGS neural-network learning algorithms using MLP-network: A survey
    • Sep
    • V. S. Asirvadam, S. F. McLoone, and G. W. Irwin, "Memory efficient BFGS neural-network learning algorithms using MLP-network: A survey," in Proc. IEEE Int. Conf. Control Appl., Sep. 2004, vol. 1, pp. 586-591.
    • (2004) Proc. IEEE Int. Conf. Control Appl , vol.1 , pp. 586-591
    • Asirvadam, V.S.1    McLoone, S.F.2    Irwin, G.W.3
  • 11
    • 34748822254 scopus 로고    scopus 로고
    • TRTRL: A localized resource-efficient learning algorithm for recurrent neural networks
    • Puerto Rico, Aug
    • D. Budik and I. Elhanany, "TRTRL: A localized resource-efficient learning algorithm for recurrent neural networks," in Proc. IEEE Midwest Symp. Circuits Syst., Puerto Rico, Aug. 2006, pp. 371-374.
    • (2006) Proc. IEEE Midwest Symp. Circuits Syst , pp. 371-374
    • Budik, D.1    Elhanany, I.2
  • 13
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • Computer Sci. Tech. Rep
    • S. E. Fahlman, "An empirical study of learning speed in back-propagation networks," Computer Sci. Tech. Rep., 1988.
    • (1988)
    • Fahlman, S.E.1
  • 14
    • 0033338205 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • Sep
    • N. N. Schraudolph, "Local gain adaptation in stochastic gradient descent," in Proc. 9th Int. Conf. Neural Netw., Sep. 1999, pp. 569-574.
    • (1999) Proc. 9th Int. Conf. Neural Netw , pp. 569-574
    • Schraudolph, N.N.1
  • 15
    • 52149116388 scopus 로고    scopus 로고
    • Fast online policy gradient learning with SMD gain vector adaptation
    • Vancouver, BC, Canada, Dec
    • N. N. Schraudolph, J. Yu, and D. Aberdeen, "Fast online policy gradient learning with SMD gain vector adaptation," in Proc. 19th Annu. Conf. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2005, pp. 1185-1192.
    • (2005) Proc. 19th Annu. Conf. Neural Inf. Process. Syst , pp. 1185-1192
    • Schraudolph, N.N.1    Yu, J.2    Aberdeen, D.3
  • 16
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • J. Kivinen and M. Warmuth, "Exponentiated gradient versus gradient descent for linear predictors," Inf. Comput., no. 1, pp. 1-64, 1997.
    • (1997) Inf. Comput , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.2
  • 17
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • B. A. Pearlmutter, "Fast exact multiplication by the Hessian," Neural Comput., vol. 6, no. 1, pp. 147-160, 1994.
    • (1994) Neural Comput , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 18
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using learning rate adaptation methods
    • G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, "Improving the convergence of the backpropagation algorithm using learning rate adaptation methods," Neural Comput., vol. 11, no. 7, pp. 1769-1796, 1999.
    • (1999) Neural Comput , vol.11 , Issue.7 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 19
    • 0025593679 scopus 로고
    • Supersab: Fast adaptive backpropagation with good scaling properties
    • T. Tollenære, "Supersab: Fast adaptive backpropagation with good scaling properties," Neural Netw., vol. 3, no. 5, pp. 561-573, 1990.
    • (1990) Neural Netw , vol.3 , Issue.5 , pp. 561-573
    • Tollenære, T.1
  • 20
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Jul
    • M. Mackey and L. Glass, "Oscillation and chaos in physiological control systems," Science, vol. 197, pp. 287-289, Jul. 1977.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.1    Glass, L.2
  • 21
    • 52149124013 scopus 로고    scopus 로고
    • R. Croder, III, Predicting the Mackey-Glass time-series with cascade-correlation learning, in Connectionist Models Summer School Proceedings, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. Pittsburgh, PA: Carnegie Mellon Univ., 1990, pp. 117-123.
    • R. Croder, III, "Predicting the Mackey-Glass time-series with cascade-correlation learning," in Connectionist Models Summer School Proceedings, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. Pittsburgh, PA: Carnegie Mellon Univ., 1990, pp. 117-123.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.