메뉴 건너뛰기




Volumn 1, Issue , 2005, Pages

Fundamentals, challenges, and advances of statistical learning for knowledge discovery and problem solving: A BYY harmony perspective

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; INTELLIGENT AGENTS; KNOWLEDGE ACQUISITION; NUMERICAL METHODS; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 33847155556     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (146)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H (1974), "A new look at the statistical model identification", IEEE Tr. Automatic Control, 19, 714-723.
    • (1974) IEEE Tr. Automatic Control , vol.19 , pp. 714-723
    • Akaike, H.1
  • 2
    • 21144438166 scopus 로고
    • Likelihood of a model and information criteria
    • Akaike, H (1981), "Likelihood of a model and information criteria", Journal of Econometrics, 16, 3-14.
    • (1981) Journal of Econometrics , vol.16 , pp. 3-14
    • Akaike, H.1
  • 3
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H (1987), "Factor analysis and AIC", Psychometrika, 52, 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 4
    • 0031277419 scopus 로고    scopus 로고
    • Stability analysis of adaptive blind source separation
    • Amari, S., Chen, TP., & Cichocki, A. (1997), "Stability analysis of adaptive blind source separation", Neural Networks, 10, 1345-1351.
    • (1997) Neural Networks , vol.10 , pp. 1345-1351
    • Amari, S.1    Chen, T.P.2    Cichocki, A.3
  • 5
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • DS Touretzky, et al, eds, MIT Press
    • Amari, SI, Cichocki, A, & Yang, HH (1996), "A new learning algorithm for blind separation of sources", in DS Touretzky, et al, eds, Advances in Neural Information Processing 8, MIT Press, 757-763.
    • (1996) Advances in Neural Information Processing 8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.H.3
  • 7
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999), "Independent factor analysis", Neural Computation, 11, 803-851.
    • (1999) Neural Computation , vol.11 , pp. 803-851
    • Attias, H.1
  • 9
    • 33847117982 scopus 로고
    • Back-propagation and unsupervised learning in linear networks
    • Y. Chauvin and D. E. Rumelhart Eds, Erlbaum Associates
    • Baldi, P. & Hornik, K.(1991). "Back-propagation and unsupervised learning in linear networks,", in Y. Chauvin and D. E. Rumelhart (Eds.), Back Propagation: Theory, Architectures and Applications. Erlbaum Associates, 1991.
    • (1991) Back Propagation: Theory, Architectures and Applications
    • Baldi, P.1    Hornik, K.2
  • 10
    • 0141700582 scopus 로고    scopus 로고
    • Latent variable models and factor analysis
    • Oxford University Press, New York
    • Bartholomew, DJ & Knott, M., (1999). "Latent variable models and factor analysis", Kendall's Library of Satisfies, Vol. 7, Oxford University Press, New York, 1999.
    • (1999) Kendall's Library of Satisfies , vol.7
    • Bartholomew, D.J.1    Knott, M.2
  • 11
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M. and Niyogi, P., (2003), "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Computation,15(6), pp1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 12
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A & Sejnowski, T (1995), "An information maximization approach to blind separation and blind deconvolution", Neural Computation, 17, 1129-1159.
    • (1995) Neural Computation , vol.17 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 13
    • 0002543590 scopus 로고
    • Maximum likelihood source separation by the expectation-maximization technique: Deterministic and stochastic implementation
    • Belouchrani, A., & Cardoso, JF, (1995), "Maximum likelihood source separation by the expectation-maximization technique: deterministic and stochastic implementation", Proc. NOLTA95, 49-53.
    • (1995) Proc. NOLTA95 , pp. 49-53
    • Belouchrani, A.1    Cardoso, J.F.2
  • 14
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • Bishop, C., Svensen, M. and Williams, C. (1998) "GTM: The generative topographic mapping", Neural Computation, 10, pp215-234.
    • (1998) Neural Computation , vol.10 , pp. 215-234
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 15
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev,T.(1986), "Generalized autoregressive conditional heteroskedasticity", Journal of Econometrics, 31, 307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 16
    • 0024220237 scopus 로고
    • Auto-association by multilayer Perceptrons and singular value decomposition
    • Bourlard, H & Kamp, Y (1988), "Auto-association by multilayer Perceptrons and singular value decomposition", Biol. Cyb. 59, 291-294.
    • (1988) Biol. Cyb , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 17
    • 34250108028 scopus 로고
    • Model Selection and Akaike's Information Criterion: The general theory and its analytical extension
    • Bozdogan, H (1987) "Model Selection and Akaike's Information Criterion: The general theory and its analytical extension", Psychometrika, 52, 345-370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 18
    • 2142731041 scopus 로고
    • FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
    • Bozdogan, H & Ramirez, DE (1988), "FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC", Psychometrika, 53 (3), 407-415.
    • (1988) Psychometrika , vol.53 , Issue.3 , pp. 407-415
    • Bozdogan, H.1    Ramirez, D.E.2
  • 19
    • 0002412868 scopus 로고
    • Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems
    • Brockett, RW (1991), "Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems", Linear Algebra and Its Applications, 146, 79-91.
    • (1991) Linear Algebra and Its Applications , vol.146 , pp. 79-91
    • Brockett, R.W.1
  • 20
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter, GA & Grossberg, S., (1987), "A massively parallel architecture for a self-organizing neural pattern recognition machine", Computer Vision, Graphics, and Image Processing, Vol.37, 54-115.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 21
    • 0031591140 scopus 로고    scopus 로고
    • Unifying the derivations for the Akaike and corrected Akaike information criteria
    • Cavanaugh, JE (1997), "Unifying the derivations for the Akaike and corrected Akaike information criteria", Statistics & Probability Letters, 33, 201-208.
    • (1997) Statistics & Probability Letters , vol.33 , pp. 201-208
    • Cavanaugh, J.E.1
  • 22
    • 35048813059 scopus 로고    scopus 로고
    • Experimental Comparison between two computational strategies for topological self-organization
    • Proc. of IDEAL03, Springer-Verlag, pp
    • Chan, KY, Chu, WS, & Xu, L (2003), "Experimental Comparison between two computational strategies for topological self-organization", Proc. of IDEAL03, Lecture Notes in Computer Science, LNCS 2690, Springer-Verlag, pp410-414.
    • (2003) Lecture Notes in Computer Science, LNCS , vol.2690 , pp. 410-414
    • Chan, K.Y.1    Chu, W.S.2    Xu, L.3
  • 23
    • 0035187852 scopus 로고    scopus 로고
    • Unified Stabilization Approach to principal and minor components extraction algorithm
    • Chen, TP, & Amari, S. (2001), "Unified Stabilization Approach to principal and minor components extraction algorithm," Neural Networks, 14, 1377-1387.
    • (2001) Neural Networks , vol.14 , pp. 1377-1387
    • Chen, T.P.1    Amari, S.2
  • 24
    • 0033991708 scopus 로고    scopus 로고
    • Some Global and Local Convergence Analysis on The Information-Theoretic Independent Component Analysis Approach
    • Cheung, CC & Xu, L. (2000), "Some Global and Local Convergence Analysis on The Information-Theoretic Independent Component Analysis Approach", Neurocomputing, 30, 79-102.
    • (2000) Neurocomputing , vol.30 , pp. 79-102
    • Cheung, C.C.1    Xu, L.2
  • 25
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G & Herskovitz, E (1992), "A Bayesian method for the induction of probabilistic networks from data", Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovitz, E.2
  • 26
    • 0028416938 scopus 로고
    • Independent component analysis - a new concept?
    • Comon, P (1994), "Independent component analysis - a new concept?", Signal Processing 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 28
    • 0029372831 scopus 로고
    • The Helmholtz machine
    • Dayan, P. & Hinton, GE (1995), "The Helmholtz machine", Neural Computation 7, No.5, 889-904.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 889-904
    • Dayan, P.1    Hinton, G.E.2
  • 32
    • 21744432053 scopus 로고    scopus 로고
    • Computing Bayes factors by combining simulations and asymptotic Approximations
    • DiCiccio, TJ, et al, (1997), "Computing Bayes factors by combining simulations and asymptotic Approximations", Journal of the American Statistical Association, 92 (439), 903-915.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.439 , pp. 903-915
    • DiCiccio, T.J.1
  • 35
    • 0033570807 scopus 로고    scopus 로고
    • Independent component analysis: A fexible nonlinearity and decorrelating manifold approach
    • Everson, R., & Roberts, S. (1999), "Independent component analysis: A fexible nonlinearity and decorrelating manifold approach", Neural Computation, 11, pp1957-1983.
    • (1999) Neural Computation , vol.11 , pp. 1957-1983
    • Everson, R.1    Roberts, S.2
  • 36
    • 0000179296 scopus 로고
    • Source Separation without a priori knowledge: The maximum likelihood solution
    • Gaeta, M, & Lacounme, JL (1990), "Source Separation without a priori knowledge: the maximum likelihood solution", in Proc. EVSIPCO90, 621-624.
    • (1990) Proc. EVSIPCO90 , pp. 621-624
    • Gaeta, M.1    Lacounme, J.L.2
  • 37
    • 0000324990 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • Girolami, M. (1998), "An alternative perspective on adaptive independent component analysis algorithms", Neural Computation, 10, 2103-2114.
    • (1998) Neural Computation , vol.10 , pp. 2103-2114
    • Girolami, M.1
  • 38
    • 0001219859 scopus 로고
    • Regularization theory and neural architectures
    • Girosi, F, et al, (1995) "Regularization theory and neural architectures", Neural Computation, 7, 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1
  • 40
    • 0029652445 scopus 로고
    • The wakesleep algorithm for unsupervised learning neural networks
    • Hinton, GE, Dayan, P, Frey, BJ, & Neal, RN (1995), "The wakesleep algorithm for unsupervised learning neural networks", Science 268, 1158-1160.
    • (1995) Science , vol.268 , pp. 1158-1160
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.N.4
  • 41
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • Hinton, GE & Zemel, RS (1994), "Autoencoders, minimum description length and Helmholtz free energy", Advances in NIPS, 6, 3-10.
    • (1994) Advances in NIPS , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 42
    • 0002467254 scopus 로고
    • Simplified calculation of principal components
    • Hotelling, H (1936), "Simplified calculation of principal components", Psychometrika 1, 27-35.
    • (1936) Psychometrika , vol.1 , pp. 27-35
    • Hotelling, H.1
  • 43
    • 0003761433 scopus 로고
    • Method and means for recognizing complex patterns,
    • U.S. Patent 3069654, Dec.18, 1962
    • Hough, PVC, (1962) "Method and means for recognizing complex patterns, U.S. Patent 3069654, Dec.18, 1962.
    • (1962)
    • Hough, P.V.C.1
  • 44
    • 33847128255 scopus 로고    scopus 로고
    • An Improved BYY Data Smoothing Learning Criterion for Selecting Subspace Dimension
    • in preparation
    • Hu, XL & Xu, L (2005), "An Improved BYY Data Smoothing Learning Criterion for Selecting Subspace Dimension", in preparation.
    • (2005)
    • Hu, X.L.1    Xu, L.2
  • 45
    • 4644228752 scopus 로고    scopus 로고
    • A Comparative Investigation on Subspace Dimension Determination
    • Hu, XL & Xu, L (2004), "A Comparative Investigation on Subspace Dimension Determination", Neural Networks, Vol. 17, (2004), 1051-1059.
    • (2004) Neural Networks , vol.17 , pp. 1051-1059
    • Hu, X.L.1    Xu, L.2
  • 46
    • 33845291376 scopus 로고    scopus 로고
    • Investigation on Several Model Selection Criteria for Determining the Number of Cluster
    • July
    • Hu, XL & Xu, L (2004), "Investigation on Several Model Selection Criteria for Determining the Number of Cluster", Neural Information Processing - Letters and Reviews, Vol.4, No.1, July 2004, pp. 1-10.
    • (2004) Neural Information Processing - Letters and Reviews , vol.4 , Issue.1 , pp. 1-10
    • Hu, X.L.1    Xu, L.2
  • 47
    • 70349119250 scopus 로고
    • Regression and time series model in samll samples
    • Hurvich, CM, & Tsai, CL (1989), "Regression and time series model in samll samples", Biometrika, 76, 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 50
    • 0001547599 scopus 로고
    • Independent Component Analysis versus Principal Component Analysis
    • Jutten, C & Herault, J (1988), "Independent Component Analysis versus Principal Component Analysis", Proc. EUSIPCO88, 643-646.
    • (1988) Proc. EUSIPCO88 , pp. 643-646
    • Jutten, C.1    Herault, J.2
  • 51
    • 85024429815 scopus 로고    scopus 로고
    • A New Approach to linear filtering and prediction problems
    • March
    • Kalman, RE, "A New Approach to linear filtering and prediction problems", Trans. ASME-J Basic Engineering, March, 35-45, 1960.
    • Trans. ASME-J Basic Engineering , vol.35-45 , pp. 1960
    • Kalman, R.E.1
  • 52
    • 0029309681 scopus 로고
    • Probabilistic and Non-probabilistic Hough Transforms: Overview and Comparisons
    • Kälviäinen, H., Hirvonen, P., Xu, L., & Oja, E. (1995), "Probabilistic and Non-probabilistic Hough Transforms: Overview and Comparisons", Image and Vision Computing, Vol.5, No. 4, pp.239-252.
    • (1995) Image and Vision Computing , vol.5 , Issue.4 , pp. 239-252
    • Kälviäinen, H.1    Hirvonen, P.2    Xu, L.3    Oja, E.4
  • 53
    • 33847140462 scopus 로고    scopus 로고
    • Karhunen, J.(1982), On the recursive estimation of the eigenvectors of correlation type matrics, Lic. Tech. Thesis, Helsinki University of Technology.
    • Karhunen, J.(1982), "On the recursive estimation of the eigenvectors of correlation type matrics", Lic. Tech. Thesis, Helsinki University of Technology.
  • 54
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • Karhunen, J. & Joutsensalo, J. (1994), "Representation and separation of signals using nonlinear PCA type learning", Neural Networks, 7(1), 113-127.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 55
    • 0020102315 scopus 로고
    • Optimal choice of AR and MA parts in autoregressive and moving-average models
    • Kashyap, RL (1982), "Optimal choice of AR and MA parts in autoregressive and moving-average models", IEEE Trans. PAMI, 4, 99-104.
    • (1982) IEEE Trans. PAMI , vol.4 , pp. 99-104
    • Kashyap, R.L.1
  • 56
    • 3843115044 scopus 로고    scopus 로고
    • Cerebellum and Motor Cobtrol
    • Second edition, MA Arbib, Ed, Cambridge, MA: The MIT Press, pp
    • Kawamoto, M. (2002), "Cerebellum and Motor Cobtrol", The Handbook of Brain Theory and Neural Networks, Second edition, (MA Arbib, Ed.), Cambridge, MA: The MIT Press, pp190-195.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 190-195
    • Kawamoto, M.1
  • 57
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T (1982), "Self-organized formation of topologically correct feature maps", Biological Cybernetics 43, 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 59
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • Lee, T., Girolami, M., & Sejnowski, T. (1999). "Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources". Neural Computation, 11, 409-433.
    • (1999) Neural Computation , vol.11 , pp. 409-433
    • Lee, T.1    Girolami, M.2    Sejnowski, T.3
  • 60
    • 0346399881 scopus 로고    scopus 로고
    • The One-bit-Matching Conjecture for Independent Component Analysis
    • Liu, ZY, Chiu, KC, and Xu, L (2004), "The One-bit-Matching Conjecture for Independent Component Analysis", Neural Computation, Vol. 16, No. 2, pp. 383-399.
    • (2004) Neural Computation , vol.16 , Issue.2 , pp. 383-399
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 61
    • 0042842439 scopus 로고    scopus 로고
    • Strip Line Detection and Thinning by RPCL-Based Local PCA
    • Liu, ZY, Chiu, KC, and Xu, L (2003), "Strip Line Detection and Thinning by RPCL-Based Local PCA", Pattern Recognition Letters 24, pp2335-2344, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2335-2344
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 62
    • 0037380809 scopus 로고    scopus 로고
    • Improved system for object detection and star/galaxy classification via local subspace analysis
    • Liu, ZY, Chiu, KC, and Xu, L (2003), "Improved system for object detection and star/galaxy classification via local subspace analysis", Neural Networks 16, (2003) 437-451.
    • (2003) Neural Networks , vol.16 , pp. 437-451
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 64
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma, J, Wang, T, & Xu, L (2004), "A gradient BYY harmony learning rule on Gaussian mixture with automated model selection", Neurocomputing 56, 481-487.
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 65
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation
    • Mackey, D (1992a) "A practical Bayesian framework for backpropagation", Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackey, D.1
  • 66
    • 0001025418 scopus 로고
    • Bayesian Interpolation
    • Mackey, D (1992b) "Bayesian Interpolation", Neural Computation, 4, 405-447.
    • (1992) Neural Computation , vol.4 , pp. 405-447
    • Mackey, D.1
  • 67
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in the striate cortex
    • von der Malsburg, Ch (1973), "Self-organization of orientation sensitive cells in the striate cortex", Kybernetik 14, 85-100.
    • (1973) Kybernetik , vol.14 , pp. 85-100
    • von der Malsburg, C.1
  • 68
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Moulines, E., Cardoso, J., & Gassiat, E. (1997), "Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models", Proc. ICASSP97, 3617-3620.
    • (1997) Proc. ICASSP97 , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.2    Gassiat, E.3
  • 71
    • 0031084370 scopus 로고    scopus 로고
    • Regression and Time Series model selection using variants of the Schwarz information criterion
    • Neath, AA & Cavanaugh, JE (1997), "Regression and Time Series model selection using variants of the Schwarz information criterion", Communications in Statistics A, 26, 559-580.
    • (1997) Communications in Statistics A , vol.26 , pp. 559-580
    • Neath, A.A.1    Cavanaugh, J.E.2
  • 72
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja, E. (1982), "A simplified neuron model as a principal component analyzer", Journal of Mathematical Biology, 16, 267-273.
    • (1982) Journal of Mathematical Biology , vol.16 , pp. 267-273
    • Oja, E.1
  • 73
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja, E. (1989). Neural networks, principal components, and subspaces", International Journal of Neural Systems, 1, 61-68.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 74
    • 0002327756 scopus 로고    scopus 로고
    • A context-sensitive generalization of ICA
    • Pearlmutter, B., & Parra, L. (1996). "A context-sensitive generalization of ICA", Proc. ICONIP96, 151-157.
    • (1996) Proc. ICONIP96 , pp. 151-157
    • Pearlmutter, B.1    Parra, L.2
  • 75
    • 0002049291 scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • Pham, DT, Garrat, P., & Jutten, C. (1992), "Separation of a mixture of independent sources through a maximum likelihood approach", Proc. EUSIPCO92, 771-774.
    • (1992) Proc. EUSIPCO92 , pp. 771-774
    • Pham, D.T.1    Garrat, P.2    Jutten, C.3
  • 77
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner, RA & Walker, HP (1984), "Mixture densities, maximum likelihood, and the EM algorithm", SIAM Review, 26, 195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.P.2
  • 79
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J (1986), "Stochastic complexity and modeling", Annals of Statistics, 14(3), 1080-1100.
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 81
    • 0033561894 scopus 로고    scopus 로고
    • On Cross Validation for Model Selection
    • Rivals, I & Personnaz, L (1999) "On Cross Validation for Model Selection", Neural Computation, 11, 863-870.
    • (1999) Neural Computation , vol.11 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 82
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • 22 December
    • Roweis, S. and Saul, LK, (2000), "Nonlinear Dimensionality Reduction by Locally Linear Embedding", Science, 290, 22 December 2000, pp2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 83
    • 0002266094 scopus 로고
    • EM algorithm for ML factor analysis
    • Rubi, D & Thayer, D (1976), "EM algorithm for ML factor analysis", Psychometrika 57, 69-76.
    • (1976) Psychometrika , vol.57 , pp. 69-76
    • Rubi, D.1    Thayer, D.2
  • 85
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G (1978), "Estimating the dimension of a model", Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 86
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone, M (1977), "An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion", J. Royal Statistical Society B, 39 (1), 44-47.
    • (1977) J. Royal Statistical Society B , vol.39 , Issue.1 , pp. 44-47
    • Stone, M.1
  • 87
    • 0000319198 scopus 로고
    • Cross-validation: A review
    • Stone, M (1978), "Cross-validation: A review", Math. Operat. Statist., 9, 127-140.
    • (1978) Math. Operat. Statist , vol.9 , pp. 127-140
    • Stone, M.1
  • 88
    • 0001588455 scopus 로고
    • Comments on model selection criteria of Akaike and Schwartz
    • Stone, M (1979), "Comments on model selection criteria of Akaike and Schwartz. J. Royal Statistical Society B, 41 (2), 276-278.
    • (1979) J. Royal Statistical Society B , vol.41 , Issue.2 , pp. 276-278
    • Stone, M.1
  • 89
    • 84963178774 scopus 로고
    • Further analysis of data by Akaike's infprmation criterion and the finite corrections
    • Sugiura, N (1978), "Further analysis of data by Akaike's infprmation criterion and the finite corrections", Communications in Statistics A, 7, 12-26.
    • (1978) Communications in Statistics A , vol.7 , pp. 12-26
    • Sugiura, N.1
  • 90
    • 0034704229 scopus 로고    scopus 로고
    • A Global Geometric Framework for Nonlinear Dimensionality Reduction
    • 22 December
    • Tenenbaum, JB, Silva, J, and Langford, JC, (2000), "A Global Geometric Framework for Nonlinear Dimensionality Reduction", Science, 290, 22 December 2000, pp2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, J.2    Langford, J.C.3
  • 92
    • 0027635389 scopus 로고
    • Waveform-preserving blind estimation of multiple independent sources
    • Tong, L, Inouye, Y, & Liu, R (1993) "Waveform-preserving blind estimation of multiple independent sources", IEEE Trans. on Signal Processing 41, 2461-2470.
    • (1993) IEEE Trans. on Signal Processing , vol.41 , pp. 2461-2470
    • Tong, L.1    Inouye, Y.2    Liu, R.3
  • 93
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, CS & Boulton, DM (1968), "An information measure for classification", Computer Journal, 11, 185-194.
    • (1968) Computer Journal , vol.11 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 95
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace, CS & Dowe, DR (1999), "Minimum message length and Kolmogorov complexity", Computer Journal, 42 (4), 270-280.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-280
    • Wallace, C.S.1    Dowe, D.R.2
  • 96
    • 0035292754 scopus 로고    scopus 로고
    • A constrained EM algorithm for independent component analysis
    • Welling, M., & Weber, M. (2001), "A constrained EM algorithm for independent component analysis", Neural Computation, 13, 677-689.
    • (2001) Neural Computation , vol.13 , pp. 677-689
    • Welling, M.1    Weber, M.2
  • 98
    • 33845296126 scopus 로고    scopus 로고
    • A5 Problem Solving Paradigm: A Unified Perspective and New Results on RHT Computing, Mixture Based Learning, and Evidence Combination
    • Beijing, 25-27 July
    • Xu, L. (2005), "A5 Problem Solving Paradigm: A Unified Perspective and New Results on RHT Computing, Mixture Based Learning, and Evidence Combination", invited and featured talk, Proc. of IEEE International Conference on Granular Computing, Beijing, 25-27 July 2005, pp70-77.
    • (2005) invited and featured talk, Proc. of IEEE International Conference on Granular Computing , pp. 70-77
    • Xu, L.1
  • 99
    • 24944561673 scopus 로고    scopus 로고
    • Xu, L. (2005),One-Bit-Matching ICA Theorem, Convex-Concave Programming, and Combinatorial Optimization, Lecture Notes in Computer Science, 3496: Advances in Neural Networks. A plenary talk on Second International Symposium on Neural Networks, May 30 - June 1, 2005, Springer-Verlag, pp5-20.
    • Xu, L. (2005),"One-Bit-Matching ICA Theorem, Convex-Concave Programming, and Combinatorial Optimization", Lecture Notes in Computer Science, Vol 3496: Advances in Neural Networks. A plenary talk on Second International Symposium on Neural Networks, May 30 - June 1, 2005, Springer-Verlag, pp5-20.
  • 100
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination
    • Xu, L. (2004), "Temporal BYY Encoding, Markovian State Spaces, and Space Dimension Determination", IEEE Trans on Neural Networks, Vol. 15, No. 5, pp1276-1295.
    • (2004) IEEE Trans on Neural Networks , vol.15 , Issue.5 , pp. 1276-1295
    • Xu, L.1
  • 101
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu, L (2004), "Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor auto-determination", IEEE Trans on Neural Networks, Vol. 15, No. 4, pp885-902.
    • (2004) IEEE Trans on Neural Networks , vol.15 , Issue.4 , pp. 885-902
    • Xu, L.1
  • 102
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying Yang Learning (I): A Unified Perspective for Statistical Modeling
    • N. Zhong and J. Liu eds, Springer, pp
    • Xu, L. (2004), "Bayesian Ying Yang Learning (I): A Unified Perspective for Statistical Modeling", Intelligent Technologies for Information Analysis, N. Zhong and J. Liu (eds), Springer, pp615-659.
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-659
    • Xu, L.1
  • 103
    • 24344441147 scopus 로고    scopus 로고
    • Bayesian Ying Yang Learning (II): A New Mechanism for Model Selection and Regularization
    • N. Zhong and J. Liu eds, Springer, pp
    • Xu, L. (2004), "Bayesian Ying Yang Learning (II): A New Mechanism for Model Selection and Regularization", Intelligent Technologies for Information Analysis, N. Zhong and J. Liu (eds), Springer, pp661-706.
    • (2004) Intelligent Technologies for Information Analysis , pp. 661-706
    • Xu, L.1
  • 104
    • 33847143091 scopus 로고    scopus 로고
    • Xu, L. (2004), Bi-directional BYY Learning for Mining Structures with Projected Polyhedra and Topological Map, Invited talk, in Proc. of FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T. Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp5-18.
    • Xu, L. (2004), "Bi-directional BYY Learning for Mining Structures with Projected Polyhedra and Topological Map", Invited talk, in Proc. of FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T. Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp5-18.
  • 105
    • 0037380850 scopus 로고    scopus 로고
    • BYY Learning, Regularized Implementation, and Model Selection on Modular Networks with One Hidden Layer of Binary Units
    • Xu, L. (2003), "BYY Learning, Regularized Implementation, and Model Selection on Modular Networks with One Hidden Layer of Binary Units", Neurocomputing, Vol.51, p227-301.
    • (2003) Neurocomputing , vol.51 , pp. 227-301
    • Xu, L.1
  • 106
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularisation, multi-sets-learning, and problem solving strategies
    • Xu, L. (2003), "Data smoothing regularisation, multi-sets-learning, and problem solving strategies", Neural Networks, Vol. 15, Nos. 5-6, 817-825.
    • (2003) Neural Networks , vol.15 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 107
    • 3843095548 scopus 로고    scopus 로고
    • Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective
    • Xu, L. (2003), "Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective", Neural Information Processing Letters and Reviews, Vol.1, No.1, 1-52.
    • (2003) Neural Information Processing Letters and Reviews , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 108
    • 0036790879 scopus 로고    scopus 로고
    • BYY Harmony Learning, Structural RPCL, and Topological Self-Organizing on Mixture Models
    • Xu, L (2002), "BYY Harmony Learning, Structural RPCL, and Topological Self-Organizing on Mixture Models ", Neural Networks, Vol. 15, Nos. 8-9, 1125-1151.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1125-1151
    • Xu, L.1
  • 109
    • 0242474188 scopus 로고    scopus 로고
    • Bayesian Ying Yang Harmony Learning
    • Second edition, MA Arbib, Ed, Cambridge, MA: The MIT Press, pp
    • Xu, L, (2002), "Bayesian Ying Yang Harmony Learning", The Handbook of Brain Theory and Neural Networks, Second edition, (MA Arbib, Ed.), Cambridge, MA: The MIT Press, pp1231-1237.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 1231-1237
    • Xu, L.1
  • 110
    • 0035391741 scopus 로고    scopus 로고
    • BYY Harmony Learning, Independent State Space and Generalized APT Financial Analyses
    • Xu, L (2001), "BYY Harmony Learning, Independent State Space and Generalized APT Financial Analyses ", IEEE Trans on Neural Networks, 12 (4), 822-849.
    • (2001) IEEE Trans on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 111
    • 0035259214 scopus 로고    scopus 로고
    • Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, Three-Layer Nets and ME-RBF-SVM Models
    • Xu, L (2001), "Best Harmony, Unified RPCL and Automated Model Selection for Unsupervised and Supervised Learning on Gaussian Mixtures, Three-Layer Nets and ME-RBF-SVM Models", Intl J of Neural Systems 11 (1), 43-69.
    • (2001) Intl J of Neural Systems , vol.11 , Issue.1 , pp. 43-69
    • Xu, L.1
  • 112
    • 0000106153 scopus 로고    scopus 로고
    • An Overview on Unsupervised Learning from Data Mining Perspective
    • Nigel Allison, et al eds, Springer-Verlag, June, pp
    • Xu, L (2001), "An Overview on Unsupervised Learning from Data Mining Perspective", Advances in Self-Organizing Maps, Nigel Allison, et al eds, Springer-Verlag, June, pp181-210 (2001).
    • (2001) Advances in Self-Organizing Maps , pp. 181-210
    • Xu, L.1
  • 113
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY Learning for State Space Approach, Hidden Markov Model and Blind Source Separation
    • Xu, L (2000), "Temporal BYY Learning for State Space Approach, Hidden Markov Model and Blind Source Separation", IEEE Trans on Signal Processing 48, 2132-2144.
    • (2000) IEEE Trans on Signal Processing , vol.48 , pp. 2132-2144
    • Xu, L.1
  • 114
    • 0032213587 scopus 로고    scopus 로고
    • Bayesian Kullback Ying-Yang Dependence Reduction Theory
    • Xu, L (1998), "Bayesian Kullback Ying-Yang Dependence Reduction Theory", Neurocomputing 22 (1-3), 81-112, 1998.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 81-112
    • Xu, L.1
  • 115
    • 0344073962 scopus 로고    scopus 로고
    • RBF Nets, Mixture Experts, and Bayesian Ying-Yang Learning
    • Xu, L (1998), "RBF Nets, Mixture Experts, and Bayesian Ying-Yang Learning", Neurocomputing, Vol. 19, No. 1-3, 223-257.
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 116
    • 0002898308 scopus 로고    scopus 로고
    • Bayesian Ying-Yang Learning Theory For Data Dimension Reduction and Determination
    • Finance & Technology Publishing
    • Xu, L(1998), "Bayesian Ying-Yang Learning Theory For Data Dimension Reduction and Determination", Journal of Computational Intelligence in Finance, Finance & Technology Publishing, Vol.6, No.5, pp 6-18, 1998.
    • (1998) Journal of Computational Intelligence in Finance , vol.6 , Issue.5 , pp. 6-18
    • Xu, L.1
  • 117
    • 0031628777 scopus 로고    scopus 로고
    • Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering
    • May 5-9, Anchorage, Alaska
    • Xu, L, (1998), Rival Penalized Competitive Learning, Finite Mixture, and Multisets Clustering, Proc. of IJCNN98, May 5-9, 1998, Anchorage, Alaska, Vol.II, pp2525-2530.
    • (1998) Proc. of IJCNN98 , vol.2 , pp. 2525-2530
    • Xu, L.1
  • 118
    • 0345019851 scopus 로고    scopus 로고
    • Learned Parametric Mixture Based ICA Algorithm
    • Xu, L, Cheung, CC, & Amari, SI (1998) "Learned Parametric Mixture Based ICA Algorithm", Neurocomputing 22 (1-3), 69-80.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 69-80
    • Xu, L.1    Cheung, C.C.2    Amari, S.I.3
  • 119
    • 0346194659 scopus 로고    scopus 로고
    • Further Results on Nonlinearity and Separation Capability of A Linear Mixture ICA Method and Learned Parametric Mixture Algorithm
    • Feb. 9-10, Tenerife, Spain, pp
    • Xu, L, Cheung, CC, & Amari, SI (1998), "Further Results on Nonlinearity and Separation Capability of A Linear Mixture ICA Method and Learned Parametric Mixture Algorithm", Proc. I&ANN'98, Feb. 9-10, 1998, Tenerife, Spain, pp39-44.
    • (1998) Proc. I&ANN'98 , pp. 39-44
    • Xu, L.1    Cheung, C.C.2    Amari, S.I.3
  • 120
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning
    • S Amari and N Kassabov eds, Springer-Verlag, pp
    • Xu, L (1997),"Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning", in S Amari and N Kassabov eds, Brain-like Computing and Intelligent Information Systems, Springer-Verlag, pp241-274.
    • (1997) Brain-like Computing and Intelligent Information Systems , pp. 241-274
    • Xu, L.1
  • 121
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling
    • KM. Wong, et al, eds, Springer-Verlag, pp
    • Xu, L (1997), "Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling", in KM. Wong, et al, eds, Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective, Springer-Verlag, pp25-42.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 25-42
    • Xu, L.1
  • 122
    • 0012671071 scopus 로고    scopus 로고
    • Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (III): Models and Algorithms for Dependence Reduction, Data Dimension Reduction, ICA and Supervised Learning
    • KM. Wong, et al, eds, Springer-Verlag, pp
    • Xu, L (1997), "Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (III): Models and Algorithms for Dependence Reduction, Data Dimension Reduction, ICA and Supervised Learning", in KM. Wong, et al, eds, Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective, Springer-Verlag, pp43-60.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 43-60
    • Xu, L.1
  • 123
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang Machine, Clustering and Number of Clusters
    • Xu, L (1997), "Bayesian Ying-Yang Machine, Clustering and Number of Clusters", Pattern Recognition Letters 18, No.11-13, 1167-1178.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 124
    • 0030706830 scopus 로고
    • Independent Component Analysis by The Information-Theoretic Approach with Mixture of Density
    • 1997
    • Xu, L, Cheung, CC, Yang, HH, & Amari, SI (1997), "Independent Component Analysis by The Information-Theoretic Approach with Mixture of Density", Proc. IJCNN97, Vol. III, 1821-1826.
    • (1821) Proc. IJCNN97 , vol.3
    • Xu, L.1    Cheung, C.C.2    Yang, H.H.3    Amari, S.I.4
  • 125
    • 0012892315 scopus 로고    scopus 로고
    • Nonlinearity and Separation Capability: Further Justification for the ICA Algorithm with A Learned Mixture of Parametric Densities
    • Bruges, April 16-18
    • Xu, L, Cheung, CC, Ruan, J, & Amari, SI (1997), "Nonlinearity and Separation Capability: Further Justification for the ICA Algorithm with A Learned Mixture of Parametric Densities", Proc. ESANN97, Bruges, April 16-18, 1997, pp291-296.
    • (1997) Proc. ESANN97 , pp. 291-296
    • Xu, L.1    Cheung, C.C.2    Ruan, J.3    Amari, S.I.4
  • 127
    • 33847158664 scopus 로고    scopus 로고
    • Xu, L. Yang, HH, & Amari, SI (1996), Signal Source Separation by Mixtures Accumulative Distribution Functions or Mixture of Bell-Shape Density Distribution Functions, Research Proposal, presented at FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L.Xu & J. F. Cardoso), organized by S.Amari, S.Tanaka & A.Cichocki, RIKEN, Japan, April 10, 1996.
    • Xu, L. Yang, HH, & Amari, SI (1996), "Signal Source Separation by Mixtures Accumulative Distribution Functions or Mixture of Bell-Shape Density Distribution Functions", Research Proposal, presented at FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L.Xu & J. F. Cardoso), organized by S.Amari, S.Tanaka & A.Cichocki, RIKEN, Japan, April 10, 1996.
  • 128
    • 85156254039 scopus 로고    scopus 로고
    • A Unified Learning Scheme: Bayesian-Kullback YING-YANG Machine
    • Xu, L, (1996), "A Unified Learning Scheme: Bayesian-Kullback YING-YANG Machine", Advances in Neural Information Processing Systems, 8, 444-450.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 444-450
    • Xu, L.1
  • 129
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu, L, & Jordan, MI (1996), "On convergence properties of the EM algorithm for Gaussian mixtures", Neural Computation, 8, No.1, 1996, 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 130
    • 0005906827 scopus 로고
    • Bayesian-Kullback Coupled YING-YANG Machines: Unified Learnings and New Results on Vector Quantization
    • Oct 30-Nov.3, Beijing, China, pp
    • Xu, L, (1995), "Bayesian-Kullback Coupled YING-YANG Machines: Unified Learnings and New Results on Vector Quantization", Proc. Intl. Conf. on Neural Information Processing (ICONIP96), Oct 30-Nov.3, 1995, Beijing, China, pp977-988.
    • (1995) Proc. Intl. Conf. on Neural Information Processing (ICONIP96) , pp. 977-988
    • Xu, L.1
  • 131
    • 0002754576 scopus 로고
    • A unified learning framework: Multisets modeling learning
    • Xu, L (1995), "A unified learning framework: multisets modeling learning," Proceedings of 1995 World Congress on Neural Networks, vol.1, pp35-42.
    • (1995) Proceedings of 1995 World Congress on Neural Networks , vol.1 , pp. 35-42
    • Xu, L.1
  • 134
    • 0029184173 scopus 로고
    • Robust Principal Component Analysis by Self-Organizing Rules Based on Statistical Physics Approach
    • Xu, L, & Yuille, AL (1995), "Robust Principal Component Analysis by Self-Organizing Rules Based on Statistical Physics Approach", IEEE Trans. on Neural Networks, Vol.6, No.1, 131-143.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2
  • 135
    • 0028731590 scopus 로고
    • Multisets Modeling Learning: An Unified Theory for Supervised and Unsupervised Learning
    • Invited Talk, June 26-July 2, Orlando, Florida
    • Xu, L, (1994), "Multisets Modeling Learning: An Unified Theory for Supervised and Unsupervised Learning", Invited Talk, Proc. IEEE ICNN94, June 26-July 2, 1994, Orlando, Florida, Vol.1, pp.315-320.
    • (1994) Proc. IEEE ICNN94 , vol.1 , pp. 315-320
    • Xu, L.1
  • 136
    • 0028341934 scopus 로고
    • On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size
    • Xu, L, Krzyzak, A, & Yuille, AL (1994), "On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size", Neural Networks, 7, 609-628.
    • (1994) Neural Networks , vol.7 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.L.3
  • 137
    • 0027629412 scopus 로고
    • Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection
    • Xu, L, Krzyzak, A & Oja, E (1993), "Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection", IEEE Tr. on Neural Networks 4, 636-649.
    • (1993) IEEE Tr. on Neural Networks , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 138
    • 0027387861 scopus 로고
    • Randomized Hough Transform (RHT): Basic Mechanisms, Algorithms and Complexities
    • Xu, L & Oja, E. (1993), "Randomized Hough Transform (RHT): Basic Mechanisms, Algorithms and Complexities", Computer Vision, Graphics, and Image Processing : Image Understanding, Vol.57, No.2, pp. 131-154.
    • (1993) Computer Vision, Graphics, and Image Processing : Image Understanding , vol.57 , Issue.2 , pp. 131-154
    • Xu, L.1    Oja, E.2
  • 139
    • 0027206958 scopus 로고    scopus 로고
    • Xu, L (1991&93) Least mean square error reconstruction for self-organizing neural-nets, Neural Networks 6, 627-648, 1993. Its early version on Proc. IJCNN91'Singapore, 2363-2373, 1991.
    • Xu, L (1991&93) "Least mean square error reconstruction for self-organizing neural-nets", Neural Networks 6, 627-648, 1993. Its early version on Proc. IJCNN91'Singapore, 2363-2373, 1991.
  • 141
    • 33847120654 scopus 로고    scopus 로고
    • Xu, L., & Jordan, M. (1992), Thoeretical and experimental studies of the EM algorithm fo Unsupervised learning based on finite Gaussin mixture, MIT Computational Cognitive Science, Tech. Rep. 9302, Dept. of Brain and Cognitive Science, MIT Cambridge, MA.
    • Xu, L., & Jordan, M. (1992), "Thoeretical and experimental studies of the EM algorithm fo Unsupervised learning based on finite Gaussin mixture", MIT Computational Cognitive Science, Tech. Rep. 9302, Dept. of Brain and Cognitive Science, MIT Cambridge, MA.
  • 142
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • Xu, L., Oja, E., & Suen, C.Y. (1992), "Modified Hebbian learning for curve and surface fitting", Neural Networks, 5, pp393-407.
    • (1992) Neural Networks , vol.5 , pp. 393-407
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 143
    • 0026860706 scopus 로고
    • Several Methods for Combining Multiple Classifiers and Their Applications in Handwritten Character Recognition
    • Xu, L., Krzyzak, A., & Suen, C.Y. (1992), "Several Methods for Combining Multiple Classifiers and Their Applications in Handwritten Character Recognition", IEEE Trans. on System, Man and Cybernetics, Vol. SMC-22, No.3, pp.418-435.
    • (1992) IEEE Trans. on System, Man and Cybernetics , vol.SMC-22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 144
    • 0000280443 scopus 로고
    • A Neural Net for Dual Subspace Pattern Recognition Methods
    • Xu, L., Krzyzak, A., & Oja, E. (1991), "A Neural Net for Dual Subspace Pattern Recognition Methods", Intl J. of Neural Systems, 2(3), 169-184.
    • (1991) Intl J. of Neural Systems , vol.2 , Issue.3 , pp. 169-184
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 145
    • 33747992562 scopus 로고
    • A New Curve Detection Method: Randomized Hough Transform (RHT)
    • Xu, L, Oja, E., & Kultanen, P. (1990), "A New Curve Detection Method: Randomized Hough Transform (RHT)", Pattern Recognition Letters, Vol.11, pp.331-338.
    • (1990) Pattern Recognition Letters , vol.11 , pp. 331-338
    • Xu, L.1    Oja, E.2    Kultanen, P.3
  • 146
    • 0030179714 scopus 로고    scopus 로고
    • Learning Multiple Causes by Competition Enhanced Least Mean Square Error Reconstruction
    • Zhang, B. L., Xu, L., & Fu, M. Y. (1996), "Learning Multiple Causes by Competition Enhanced Least Mean Square Error Reconstruction", Intl J. of Neural Systems, 7(3), 223-236.
    • (1996) Intl J. of Neural Systems , vol.7 , Issue.3 , pp. 223-236
    • Zhang, B.L.1    Xu, L.2    Fu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.