-
1
-
-
77649126524
-
-
Heart disease and stroke statistics - 2010 update. A report from the American Heart Association. Circulation 121
-
Lloyd-Jones, D. et al. (2010) Heart disease and stroke statistics - 2010 update. A report from the American Heart Association. Circulation 121, e46-e215.
-
(2010)
, pp. 46-215
-
-
Lloyd-Jones, D.1
-
2
-
-
30944432553
-
Cell-based cardiac repair: reflections at the 10-year point
-
Murry C.E., et al. Cell-based cardiac repair: reflections at the 10-year point. Circulation 2005, 112:3174-3183.
-
(2005)
Circulation
, vol.112
, pp. 3174-3183
-
-
Murry, C.E.1
-
3
-
-
70349330763
-
Regeneration next: toward heart stem cell therapeutics
-
Hansson E.M., et al. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 2009, 5:364-377.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 364-377
-
-
Hansson, E.M.1
-
5
-
-
0242584006
-
Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes
-
Alvarez-Dolado M., et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003, 425:968-973.
-
(2003)
Nature
, vol.425
, pp. 968-973
-
-
Alvarez-Dolado, M.1
-
6
-
-
0036487243
-
Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting
-
Reinecke H., et al. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol. 2002, 34:241-249.
-
(2002)
J. Mol. Cell Cardiol.
, vol.34
, pp. 241-249
-
-
Reinecke, H.1
-
7
-
-
11144356049
-
Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts
-
Murry C.E., et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004, 428:664-668.
-
(2004)
Nature
, vol.428
, pp. 664-668
-
-
Murry, C.E.1
-
8
-
-
1942517003
-
Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium
-
Balsam L.B., et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004, 428:668-673.
-
(2004)
Nature
, vol.428
, pp. 668-673
-
-
Balsam, L.B.1
-
9
-
-
2442675144
-
Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation
-
Nygren J.M., et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 2004, 10:494-501.
-
(2004)
Nat. Med.
, vol.10
, pp. 494-501
-
-
Nygren, J.M.1
-
10
-
-
0034194209
-
Electromechanical coupling between skeletal and cardiac muscle: implications for infarct repair
-
Reinecke H., et al. Electromechanical coupling between skeletal and cardiac muscle: implications for infarct repair. J. Cell Biol. 2000, 149:731-740.
-
(2000)
J. Cell Biol.
, vol.149
, pp. 731-740
-
-
Reinecke, H.1
-
11
-
-
0037414086
-
Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction
-
Menasche P., et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 2003, 41:1078-1083.
-
(2003)
J. Am. Coll. Cardiol.
, vol.41
, pp. 1078-1083
-
-
Menasche, P.1
-
12
-
-
39349106325
-
Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development
-
Murry C.E., Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008, 132:661-680.
-
(2008)
Cell
, vol.132
, pp. 661-680
-
-
Murry, C.E.1
Keller, G.2
-
13
-
-
0036092735
-
Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats
-
Min J.Y., et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 2002, 92:288-296.
-
(2002)
J. Appl. Physiol.
, vol.92
, pp. 288-296
-
-
Min, J.Y.1
-
14
-
-
0037326459
-
Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells
-
Min J.Y., et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 2003, 125:361-369.
-
(2003)
J. Thorac. Cardiovasc. Surg.
, vol.125
, pp. 361-369
-
-
Min, J.Y.1
-
15
-
-
24044551612
-
Formation of human myocardium in the rat heart from human embryonic stem cells
-
Laflamme M.A., et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 2005, 167:663-671.
-
(2005)
Am. J. Pathol.
, vol.167
, pp. 663-671
-
-
Laflamme, M.A.1
-
16
-
-
5044221669
-
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells
-
Kehat I., et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 2004, 22:1282-1289.
-
(2004)
Nat. Biotechnol.
, vol.22
, pp. 1282-1289
-
-
Kehat, I.1
-
17
-
-
11244249952
-
Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers
-
Xue T., et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005, 111:11-20.
-
(2005)
Circulation
, vol.111
, pp. 11-20
-
-
Xue, T.1
-
18
-
-
34948891467
-
Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts
-
Laflamme M.A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 2007, 25:1015-1024.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1015-1024
-
-
Laflamme, M.A.1
-
19
-
-
35548974727
-
Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts
-
Caspi O., et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 2007, 50:1884-1893.
-
(2007)
J. Am. Coll. Cardiol.
, vol.50
, pp. 1884-1893
-
-
Caspi, O.1
-
20
-
-
34848923726
-
Human embryonic stem cell transplantation to repair the infarcted myocardium
-
Leor J., et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Br. Med. J. 2007, 93:1278-1284.
-
(2007)
Br. Med. J.
, vol.93
, pp. 1278-1284
-
-
Leor, J.1
-
21
-
-
77649248002
-
Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue
-
Song H., et al. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Natl. Acad. Sci. U. S. A. 2009, 107:3329-3334.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 3329-3334
-
-
Song, H.1
-
22
-
-
36249025247
-
Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction
-
van Laake L.W., et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007, 1:9-24.
-
(2007)
Stem Cell Res.
, vol.1
, pp. 9-24
-
-
van Laake, L.W.1
-
23
-
-
70349171815
-
Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size
-
van Laake L.W., et al. Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res. 2009, 3:106-112.
-
(2009)
Stem Cell Res.
, vol.3
, pp. 106-112
-
-
van Laake, L.W.1
-
24
-
-
33750456216
-
Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages
-
Kattman S.J., et al. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 2006, 11:723-732.
-
(2006)
Dev. Cell
, vol.11
, pp. 723-732
-
-
Kattman, S.J.1
-
25
-
-
33845457194
-
Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
-
Moretti A., et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006, 127:1151-1165.
-
(2006)
Cell
, vol.127
, pp. 1151-1165
-
-
Moretti, A.1
-
26
-
-
33845442108
-
Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart
-
Wu S.M., et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 2006, 127:1137-1150.
-
(2006)
Cell
, vol.127
, pp. 1137-1150
-
-
Wu, S.M.1
-
27
-
-
44349175948
-
Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population
-
Yang L., et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008, 453:524-528.
-
(2008)
Nature
, vol.453
, pp. 524-528
-
-
Yang, L.1
-
28
-
-
67650071028
-
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages
-
Bu L., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 2009, 460:113-117.
-
(2009)
Nature
, vol.460
, pp. 113-117
-
-
Bu, L.1
-
29
-
-
33748621746
-
Making or breaking the heart: from lineage determination to morphogenesis
-
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 2006, 126:1037-1048.
-
(2006)
Cell
, vol.126
, pp. 1037-1048
-
-
Srivastava, D.1
-
30
-
-
33644680809
-
Building the mammalian heart from two sources of myocardial cells
-
Buckingham M., et al. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 2005, 6:826-835.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 826-835
-
-
Buckingham, M.1
-
31
-
-
0035461911
-
The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm
-
Kelly R.G., et al. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 2001, 1:435-440.
-
(2001)
Dev. Cell
, vol.1
, pp. 435-440
-
-
Kelly, R.G.1
-
32
-
-
2342518098
-
The clonal origin of myocardial cells in different regions of the embryonic mouse heart
-
Meilhac S.M., et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 2004, 6:685-698.
-
(2004)
Dev. Cell
, vol.6
, pp. 685-698
-
-
Meilhac, S.M.1
-
33
-
-
0346783332
-
Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
-
Cai C.L., et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 2003, 5:877-889.
-
(2003)
Dev. Cell
, vol.5
, pp. 877-889
-
-
Cai, C.L.1
-
34
-
-
53649094995
-
Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity
-
Ma Q., et al. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol. 2008, 323:98-104.
-
(2008)
Dev. Biol.
, vol.323
, pp. 98-104
-
-
Ma, Q.1
-
35
-
-
33847344204
-
An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation
-
Prall O.W.J., et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 2007, 128:947-959.
-
(2007)
Cell
, vol.128
, pp. 947-959
-
-
Prall, O.W.J.1
-
36
-
-
70350131483
-
Generation of functional ventricular heart muscle from mouse ventricular progenitor cells
-
Domian I.J., et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 2009, 326:426-429.
-
(2009)
Science
, vol.326
, pp. 426-429
-
-
Domian, I.J.1
-
37
-
-
0036301401
-
Patterning the vertebrate heart
-
Harvey R.P., et al. Patterning the vertebrate heart. Nat. Rev. Genet. 2002, 3:544-556.
-
(2002)
Nat. Rev. Genet.
, vol.3
, pp. 544-556
-
-
Harvey, R.P.1
-
38
-
-
33749435799
-
The role of Wnt signaling in cardiac development and tissue remodelling in the mature heart
-
Brade T., et al. The role of Wnt signaling in cardiac development and tissue remodelling in the mature heart. Cardiovasc. Res. 2006, 72:198-209.
-
(2006)
Cardiovasc. Res.
, vol.72
, pp. 198-209
-
-
Brade, T.1
-
39
-
-
42149159492
-
Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis, and progenitor self-renewal
-
Cohen E.D., et al. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis, and progenitor self-renewal. Development 2008, 135:789-798.
-
(2008)
Development
, vol.135
, pp. 789-798
-
-
Cohen, E.D.1
-
40
-
-
34547796852
-
The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway
-
Qyang Y., et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 2007, 1:165-179.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 165-179
-
-
Qyang, Y.1
-
41
-
-
34250800027
-
Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors
-
Kwon C., et al. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:10894-10899.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 10894-10899
-
-
Kwon, C.1
-
42
-
-
33845928762
-
Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis
-
Naito A.T., et al. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:19812-19817.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 19812-19817
-
-
Naito, A.T.1
-
43
-
-
34250802982
-
Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells
-
Ueno S., et al. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:9685-9690.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 9685-9690
-
-
Ueno, S.1
-
44
-
-
37549020639
-
Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood
-
Nostro M.C., et al. Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2008, 2:60-71.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 60-71
-
-
Nostro, M.C.1
-
45
-
-
68249120547
-
A regulatory pathway involving Notch1/-catenin/Isl1 determines cardiac progenitor cell fate
-
Kwon C., et al. A regulatory pathway involving Notch1/-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 2009, 11:951-957.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 951-957
-
-
Kwon, C.1
-
46
-
-
0025855079
-
The myoD gene family: nodal point during specification of the muscle cell lineage
-
Weintraub H., et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 1991, 251:761-766.
-
(1991)
Science
, vol.251
, pp. 761-766
-
-
Weintraub, H.1
-
47
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
48
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861-872.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
-
49
-
-
77649162059
-
Direct conversion of fibroblasts to functional neurons by defined factors
-
Vierbuchen T., et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463:1035-1041.
-
(2010)
Nature
, vol.463
, pp. 1035-1041
-
-
Vierbuchen, T.1
-
50
-
-
33749361499
-
Gene regulatory networks in the evolution and development of the heart
-
Olson E.N. Gene regulatory networks in the evolution and development of the heart. Science 2006, 313:1922-1927.
-
(2006)
Science
, vol.313
, pp. 1922-1927
-
-
Olson, E.N.1
-
51
-
-
0034449141
-
Mesp1 expression is the earliest sign of cardiovascular development
-
Saga Y., et al. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc. Med. 2000, 10:345-352.
-
(2000)
Trends Cardiovasc. Med.
, vol.10
, pp. 345-352
-
-
Saga, Y.1
-
52
-
-
48649106835
-
Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs
-
Lindsley R.C., et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 2008, 3:55-68.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 55-68
-
-
Lindsley, R.C.1
-
53
-
-
48649087364
-
Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification
-
Bondue A., et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008, 3:69-84.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 69-84
-
-
Bondue, A.1
-
54
-
-
40249093060
-
MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling
-
David R., et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 2008, 10:338-345.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 338-345
-
-
David, R.1
-
55
-
-
66649127942
-
Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors
-
Takeuchi J.K., Bruneau B.G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459:708-711.
-
(2009)
Nature
, vol.459
, pp. 708-711
-
-
Takeuchi, J.K.1
Bruneau, B.G.2
-
56
-
-
77955321344
-
-
Direct reprogramming of cardiac fibroblasts into functional cardiomyocytes by defined factors. Cell.(in press)
-
Ieda, M. et al. (2010) Direct reprogramming of cardiac fibroblasts into functional cardiomyocytes by defined factors. Cell.(in press).
-
(2010)
-
-
Ieda, M.1
-
57
-
-
13544272476
-
Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages
-
Laugwitz K.L., et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005, 433:647-653.
-
(2005)
Nature
, vol.433
, pp. 647-653
-
-
Laugwitz, K.L.1
-
58
-
-
10744228523
-
Adult cardiac stem cells are multipotent and support myocardial regeneration
-
Beltrami A.P., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114:763-776.
-
(2003)
Cell
, vol.114
, pp. 763-776
-
-
Beltrami, A.P.1
-
59
-
-
0142027772
-
Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction
-
Oh H., et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:12313-12318.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 12313-12318
-
-
Oh, H.1
-
60
-
-
0347623124
-
Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart
-
Martin C., et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 2004, 265:262-272.
-
(2004)
Dev. Biol.
, vol.265
, pp. 262-272
-
-
Martin, C.1
-
61
-
-
4644313812
-
Coronary vessel development: the epicardium delivers
-
Olivey H.E., et al. Coronary vessel development: the epicardium delivers. Trends Cardiovasc. Med. 2004, 14:247-251.
-
(2004)
Trends Cardiovasc. Med.
, vol.14
, pp. 247-251
-
-
Olivey, H.E.1
-
62
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A., et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127:607-619.
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
-
63
-
-
38849197532
-
Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish
-
Wills A.A., et al. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 2008, 135:183-192.
-
(2008)
Development
, vol.135
, pp. 183-192
-
-
Wills, A.A.1
-
64
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B., et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454:109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
-
65
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai C.L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454:104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
-
66
-
-
65249137151
-
Tbx18 and the fate of epicardial progenitors
-
Christoffels V.M., et al. Tbx18 and the fate of epicardial progenitors. Nature 2009, 458:E8-E10.
-
(2009)
Nature
, vol.458
-
-
Christoffels, V.M.1
-
67
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C., et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464:606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
-
68
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes
-
Kikuchi K., et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010, 464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
-
69
-
-
0037478841
-
The first half-century of nuclear transplantation
-
Gurdon J.B., Byrne J.A. The first half-century of nuclear transplantation. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:8048-8052.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 8048-8052
-
-
Gurdon, J.B.1
Byrne, J.A.2
-
70
-
-
63049090064
-
A fresh look at iPS cells
-
Yamanaka S. A fresh look at iPS cells. Cell 2009, 137:13-17.
-
(2009)
Cell
, vol.137
, pp. 13-17
-
-
Yamanaka, S.1
-
71
-
-
69949104478
-
Adult mice generated from induced pluriopotent stem cells
-
Boland M.J., et al. Adult mice generated from induced pluriopotent stem cells. Nature 2009, 461:91-94.
-
(2009)
Nature
, vol.461
, pp. 91-94
-
-
Boland, M.J.1
-
72
-
-
69949089630
-
IPS cells produce viable mice through tetraploid complementation
-
Zhao X., et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009, 463:86-90.
-
(2009)
Nature
, vol.463
, pp. 86-90
-
-
Zhao, X.1
-
73
-
-
0001072834
-
Influences of ectoderm and endoderm on heart differentiation in the newt
-
Jacobson A.G. Influences of ectoderm and endoderm on heart differentiation in the newt. Dev. Biol. 1960, 2:138-154.
-
(1960)
Dev. Biol.
, vol.2
, pp. 138-154
-
-
Jacobson, A.G.1
-
74
-
-
0034111134
-
Endoderm and heart development
-
Lough J., Sugi Y. Endoderm and heart development. Dev. Dyn. 2000, 217:327-342.
-
(2000)
Dev. Dyn.
, vol.217
, pp. 327-342
-
-
Lough, J.1
Sugi, Y.2
-
75
-
-
0028822905
-
Neurogenic cells inhibit the differentiation of cardiogenic cells
-
Climent S., et al. Neurogenic cells inhibit the differentiation of cardiogenic cells. Dev. Biol. 1995, 171:130-148.
-
(1995)
Dev. Biol.
, vol.171
, pp. 130-148
-
-
Climent, S.1
-
76
-
-
0343550417
-
Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments
-
Raffin M., et al. Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments. Dev. Biol. 2000, 218:326-340.
-
(2000)
Dev. Biol.
, vol.218
, pp. 326-340
-
-
Raffin, M.1
-
77
-
-
0031018002
-
A role for bone morphogenetic proteins in the induction of cardiac myogenesis
-
Schultheiss T.M., et al. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997, 11:451-462.
-
(1997)
Genes Dev.
, vol.11
, pp. 451-462
-
-
Schultheiss, T.M.1
-
78
-
-
0034004871
-
BMP2 is required for early heart development during a distinct time period
-
Schlange T., et al. BMP2 is required for early heart development during a distinct time period. Mech. Dev. 2000, 91:259-270.
-
(2000)
Mech. Dev.
, vol.91
, pp. 259-270
-
-
Schlange, T.1
-
79
-
-
0034663217
-
BMP signaling is required for heart formation in vertebrates
-
Shi Y., et al. BMP signaling is required for heart formation in vertebrates. Dev. Biol. 2000, 224:226-237.
-
(2000)
Dev. Biol.
, vol.224
, pp. 226-237
-
-
Shi, Y.1
-
80
-
-
0029850112
-
Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development
-
Zhang H., Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996, 122:2977-2986.
-
(1996)
Development
, vol.122
, pp. 2977-2986
-
-
Zhang, H.1
Bradley, A.2
-
81
-
-
0035252105
-
Wnt signals from the neural tube block ectopic cardiogenesis
-
Tzahor E., Lassar A.B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 2001, 15:255-260.
-
(2001)
Genes Dev.
, vol.15
, pp. 255-260
-
-
Tzahor, E.1
Lassar, A.B.2
-
82
-
-
0035252357
-
Inhibition of Wnt activity induces heart formation from posterior mesoderm
-
Marvin M.J., et al. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001, 15:316-327.
-
(2001)
Genes Dev.
, vol.15
, pp. 316-327
-
-
Marvin, M.J.1
-
83
-
-
0035252543
-
Wnt antagonism initiates cardiogenesis in Xenopus laevis
-
Schneider V.A., Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 2001, 15:304-315.
-
(2001)
Genes Dev.
, vol.15
, pp. 304-315
-
-
Schneider, V.A.1
Mercola, M.2
-
84
-
-
0036696415
-
Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm
-
Lickert H., et al. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev. Cell 2002, 3:171-181.
-
(2002)
Dev. Cell
, vol.3
, pp. 171-181
-
-
Lickert, H.1
|