메뉴 건너뛰기




Volumn , Issue , 2008, Pages 368-375

Boosting with incomplete information

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); MACHINE LEARNING; NATURAL LANGUAGE PROCESSING SYSTEMS; OBJECT RECOGNITION; VISUAL LANGUAGES; COMPUTATIONAL LINGUISTICS; COMPUTER VISION; EDUCATION; FUNCTIONS; IMAGE PROCESSING; LEARNING SYSTEMS; PROBABILITY DENSITY FUNCTION; ROBOT LEARNING;

EID: 56449090322     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390203     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 1
    • 26944496310 scopus 로고    scopus 로고
    • Support vector classification with input data uncertainty
    • Bi, J., & Zhang, T. (2004). Support vector classification with input data uncertainty. NIPS.
    • (2004) NIPS
    • Bi, J.1    Zhang, T.2
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation.
    • (1999) Neural Computation
    • Breiman, L.1
  • 7
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. CVPR.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A Statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A Statistical view of boosting. The Annals of Statistics, 28, 337-407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 78049407284 scopus 로고    scopus 로고
    • Hidden-variable models for discriminative reranking
    • Koo, T., & Collins, M. (2005). Hidden-variable models for discriminative reranking. Proceedings of EMNLP.
    • (2005) Proceedings of EMNLP
    • Koo, T.1    Collins, M.2
  • 12
    • 84898999495 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • Lebanon, G., & Lafferty, J. D. (2002). Boosting and maximum likelihood for exponential models. NIPS.
    • (2002) NIPS
    • Lebanon, G.1    Lafferty, J.D.2
  • 16
    • 41549091730 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease, D., & Wyner, A. (2008). Evidence contrary to the statistical view of boosting. JMLR, 9.
    • (2008) JMLR , vol.9
    • Mease, D.1    Wyner, A.2
  • 17
    • 33749253818 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • Quattoni, A., Collins, M., & Darrell, T. (2005). Conditional random fields for object recognition. NIPS.
    • (2005) NIPS
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 18
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • Springer
    • Schapire, R. (2004). The boosting approach to machine learning: An overview. In Nonlinear estimation and classification. Springer.
    • (2004) Nonlinear estimation and classification
    • Schapire, R.1
  • 19
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning. 37, 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 20
    • 33745800909 scopus 로고    scopus 로고
    • Second order cone programming approaches for handling missing and uncertain data
    • Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J. (2006). Second order cone programming approaches for handling missing and uncertain data. JMLR, 7.
    • (2006) JMLR , vol.7
    • Shivaswamy, P.K.1    Bhattacharyya, C.2    Smola, A.J.3
  • 23
    • 33845597355 scopus 로고    scopus 로고
    • The layout consistent random field for recognizing and segmenting partially occluded objects
    • Winn, J., & Shotton, J. (2006). The layout consistent random field for recognizing and segmenting partially occluded objects. CVPR.
    • (2006) CVPR
    • Winn, J.1    Shotton, J.2
  • 24
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. ICML.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.