-
1
-
-
26944496310
-
Support vector classification with input data uncertainty
-
Bi, J., & Zhang, T. (2004). Support vector classification with input data uncertainty. NIPS.
-
(2004)
NIPS
-
-
Bi, J.1
Zhang, T.2
-
2
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation.
-
(1999)
Neural Computation
-
-
Breiman, L.1
-
4
-
-
56549083909
-
Max-margin classification of incomplete data
-
Chechik, G., Heitz, G., Elidan, G., Abbeel, P., & Koller, D. (2007). Max-margin classification of incomplete data. NIPS.
-
(2007)
NIPS
-
-
Chechik, G.1
Heitz, G.2
Elidan, G.3
Abbeel, P.4
Koller, D.5
-
5
-
-
0036643072
-
Logistic regression, adaboost and bregman distances
-
Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic regression, adaboost and bregman distances. Machine Learning.
-
(2002)
Machine Learning
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
6
-
-
33745839880
-
Learning object categories from google's image search
-
Fergus, R., Fei-Fei, L., Perona, P., & Zisserman, A. (2005). Learning object categories from google's image search. IEEE International Conference on Computer Vision.
-
(2005)
IEEE International Conference on Computer Vision
-
-
Fergus, R.1
Fei-Fei, L.2
Perona, P.3
Zisserman, A.4
-
7
-
-
0041940256
-
Object class recognition by unsupervised scale-invariant learning
-
Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. CVPR.
-
(2003)
CVPR
-
-
Fergus, R.1
Perona, P.2
Zisserman, A.3
-
8
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
0034164230
-
Additive logistic regression: A Statistical view of boosting
-
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A Statistical view of boosting. The Annals of Statistics, 28, 337-407.
-
(2000)
The Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
0035507681
-
Scale, saliency and image description
-
Kadir, T., & Brady, M. (2001). Scale, saliency and image description. International Journal of Computer Vision, 45, 83-105.
-
(2001)
International Journal of Computer Vision
, vol.45
, pp. 83-105
-
-
Kadir, T.1
Brady, M.2
-
11
-
-
78049407284
-
Hidden-variable models for discriminative reranking
-
Koo, T., & Collins, M. (2005). Hidden-variable models for discriminative reranking. Proceedings of EMNLP.
-
(2005)
Proceedings of EMNLP
-
-
Koo, T.1
Collins, M.2
-
12
-
-
84898999495
-
Boosting and maximum likelihood for exponential models
-
Lebanon, G., & Lafferty, J. D. (2002). Boosting and maximum likelihood for exponential models. NIPS.
-
(2002)
NIPS
-
-
Lebanon, G.1
Lafferty, J.D.2
-
14
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
MIT Press
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Functional gradient techniques for combining hypotheses. In Advances in large margin classifiers, 221-246. MIT Press.
-
(2000)
Advances in large margin classifiers
, pp. 221-246
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
15
-
-
33646003948
-
Dynamic conditional random fields for jointly labeling multiple sequences
-
McCallum, A., Rohanimanesh, K., & Sutton, C. (2003). Dynamic conditional random fields for jointly labeling multiple sequences. NIPS Workshop on Syntax, Semantics, Statistics.
-
(2003)
NIPS Workshop on Syntax, Semantics, Statistics
-
-
McCallum, A.1
Rohanimanesh, K.2
Sutton, C.3
-
16
-
-
41549091730
-
Evidence contrary to the statistical view of boosting
-
Mease, D., & Wyner, A. (2008). Evidence contrary to the statistical view of boosting. JMLR, 9.
-
(2008)
JMLR
, vol.9
-
-
Mease, D.1
Wyner, A.2
-
17
-
-
33749253818
-
Conditional random fields for object recognition
-
Quattoni, A., Collins, M., & Darrell, T. (2005). Conditional random fields for object recognition. NIPS.
-
(2005)
NIPS
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
18
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
Springer
-
Schapire, R. (2004). The boosting approach to machine learning: An overview. In Nonlinear estimation and classification. Springer.
-
(2004)
Nonlinear estimation and classification
-
-
Schapire, R.1
-
19
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning. 37, 297-336.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
20
-
-
33745800909
-
Second order cone programming approaches for handling missing and uncertain data
-
Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J. (2006). Second order cone programming approaches for handling missing and uncertain data. JMLR, 7.
-
(2006)
JMLR
, vol.7
-
-
Shivaswamy, P.K.1
Bhattacharyya, C.2
Smola, A.J.3
-
21
-
-
33745938597
-
Discovering objects and their location in images
-
Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., & Freeman, W. T. (2005). Discovering objects and their location in images. IEEE International Conference on Computer Vision.
-
(2005)
IEEE International Conference on Computer Vision
-
-
Sivic, J.1
Russell, B.C.2
Efros, A.A.3
Zisserman, A.4
Freeman, W.T.5
-
22
-
-
0004308492
-
Robust real-time object detection
-
Viola, P., & Jones, M. (2001). Robust real-time object detection. Workshop on Statistical and Computational Theories of Vision - Modeling, Learning, Computing, and Sampling.
-
(2001)
Workshop on Statistical and Computational Theories of Vision - Modeling, Learning, Computing, and Sampling
-
-
Viola, P.1
Jones, M.2
-
23
-
-
33845597355
-
The layout consistent random field for recognizing and segmenting partially occluded objects
-
Winn, J., & Shotton, J. (2006). The layout consistent random field for recognizing and segmenting partially occluded objects. CVPR.
-
(2006)
CVPR
-
-
Winn, J.1
Shotton, J.2
-
24
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. ICML.
-
(2003)
ICML
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|