메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1017-1025

Information theoretic regularization for semi-supervised boosting

Author keywords

Ensemble method; Semi supervised learning

Indexed keywords

BEARING LOSS; BOOSTING ALGORITHM; ENSEMBLE METHOD; FUNCTIONAL GRADIENT DESCENT; GRADIENT DESCENT OPTIMIZATION; LABELED DATA; LINEAR COMBINATIONS; REAL-WORLD TASK; REGULARIZATION FRAMEWORK; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; TRAINING DATA; UNLABELED DATA; WEAK CLASSIFIERS;

EID: 71049137802     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557129     Document Type: Conference Paper
Times cited : (17)

References (34)
  • 5
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • L. Breiman. Prediction games and arcing classifiers. Neural Computation, 11:1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 6
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • V. Castelli and T. Cover. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Trans. on Information Theory, 42(6):2102-2117, 1996.
    • (1996) IEEE Trans. on Information Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.2
  • 7
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14:315-332, 1992.
    • (1992) Computational Statistics and Data Analysis , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 10
    • 84869664229 scopus 로고    scopus 로고
    • I. Cohen and F. Cozman. Risks of semi-supervised learning. Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, 55-70, MIT Press, 2006.
    • I. Cohen and F. Cozman. Risks of semi-supervised learning. Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, 55-70, MIT Press, 2006.
  • 11
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • M. Collins, R. Schapire and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1-3):253-285, 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 253-285
    • Collins, M.1    Schapire, R.2    Singer, Y.3
  • 12
    • 84869664236 scopus 로고    scopus 로고
    • A. Corduneanu and T. Jaakkola. Data dependent regularization. Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, 163-182, MIT Press, 2006.
    • A. Corduneanu and T. Jaakkola. Data dependent regularization. Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, 163-182, MIT Press, 2006.
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 18
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T.Hastie and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2):337-407, 2000.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A. Smola, P. Bartlett, B. Scholköpf and D. Schuurmans, editors, MIT Press
    • L. Mason, J. Baxter, P. Bartlett and M. Frean. Functional gradient techniques for combining hypotheses. In Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholköpf and D. Schuurmans, editors, 221-246, MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 221-246
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 27
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning. 39(2/3):135-167, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-167
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 28
    • 0033899728 scopus 로고    scopus 로고
    • Maximum certainty data partitioning
    • S. Roberts, R. Everson and I. Rezek. Maximum certainty data partitioning. Pattern Recognition, 33(5):833-839, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.5 , pp. 833-839
    • Roberts, S.1    Everson, R.2    Rezek, I.3
  • 29
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 31
    • 71049175276 scopus 로고    scopus 로고
    • Rate distortion based semi-supervised discriminative learning
    • Technical Report
    • Y. Wang, G. Haffari, S. Wang and G. Mori. Rate distortion based semi-supervised discriminative learning. Technical Report, 2009.
    • (2009)
    • Wang, Y.1    Haffari, G.2    Wang, S.3    Mori, G.4
  • 33
    • 49749129552 scopus 로고    scopus 로고
    • Multiclass AdaBoost
    • Technical Report
    • J. Zhu, S. Rosset, H. Zhou and T. Hastie. Multiclass AdaBoost. Technical Report, 2005.
    • (2005)
    • Zhu, J.1    Rosset, S.2    Zhou, H.3    Hastie, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.