메뉴 건너뛰기




Volumn 38, Issue 1, 2011, Pages 174-189

A meta-heuristic approach for improving the accuracy in some classification algorithms

Author keywords

Classification; Convex region; False negative; False positive; Fitting; Generalization; Genetic algorithms; Optimization; Unclassifiable

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA HANDLING; GENETIC ALGORITHMS; HEURISTIC METHODS; OPTIMIZATION;

EID: 77956059614     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2010.04.011     Document Type: Conference Paper
Times cited : (21)

References (100)
  • 1
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitri Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes IEEE Transactions on Pattern Analysis and Machine Intelligence 28 6 2006 1001 1007
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 1001-1007
    • Pujol, O.1    Radeva, P.2    Vitri, J.3
  • 3
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • K. Crammer, and Y. Singer On the learnability and design of output codes for multiclass problems Machine Learning 47 23 2002 201 233
    • (2002) Machine Learning , vol.47 , Issue.23 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 9
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • J.R. Quinlan Improved use of continuous attributes in C4.5 Artificial Intelligence Research 4 1996 77 90
    • (1996) Artificial Intelligence Research , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 11
    • 43349086449 scopus 로고    scopus 로고
    • Prediction of diabetes by employing a new data mining approach which balances fitting and generalization
    • H.N.A. Pham, and E. Triantaphyllou Prediction of diabetes by employing a new data mining approach which balances fitting and generalization R. Yin Lee, Studies in computation intelligence vol. 131 2008 Springer Berlin, Germany [p. 1126, chapter 2]
    • (2008) Studies in Computation Intelligence , vol.131
    • Pham, H.N.A.1    Triantaphyllou, E.2
  • 12
    • 60849122524 scopus 로고    scopus 로고
    • An application of a new meta-heuristic for optimizing the classification accuracy when analyzing some medical datasets
    • H.N.A. Pham, and E. Triantaphyllou An application of a new meta-heuristic for optimizing the classification accuracy when analyzing some medical datasets Expert Systems with Applications 36 5 2009 9240 9249
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 9240-9249
    • Pham, H.N.A.1    Triantaphyllou, E.2
  • 13
    • 84890008245 scopus 로고    scopus 로고
    • The impact of overfitting and overgeneralization on the classification accuracy in data mining
    • H.N.A. Pham, and E. Triantaphyllou The impact of overfitting and overgeneralization on the classification accuracy in data mining O. Maimon, L. Rokach, Soft computing for knowledge discovery and data mining 2007 Springer New York, NY, USA [p. 391431, part 4, chapter 5]
    • (2007) Soft Computing for Knowledge Discovery and Data Mining
    • Pham, H.N.A.1    Triantaphyllou, E.2
  • 14
    • 0343103945 scopus 로고
    • The use of random and contiguous quadrats in the study of the structure of plant communities
    • P. Greig-Smith The use of random and contiguous quadrats in the study of the structure of plant communities Annals of Botany 16 1952 293 316
    • (1952) Annals of Botany , vol.16 , pp. 293-316
    • Greig-Smith, P.1
  • 15
    • 34250314887 scopus 로고    scopus 로고
    • Decision-tree instance-space decomposition with grouped gain-ratio
    • S. Cohen, L. Rokach, and O. Maimon Decision-tree instance-space decomposition with grouped gain-ratio Journal of Information Science 177 17 2007 3592 3612
    • (2007) Journal of Information Science , vol.177 , Issue.17 , pp. 3592-3612
    • Cohen, S.1    Rokach, L.2    Maimon, O.3
  • 17
    • 33748147286 scopus 로고    scopus 로고
    • Breast cancer and liver disorders classification using artificial immune recognition system (airs) with performance evaluation by fuzzy resource allocation mechanism
    • K.A. Polat, S. Sahan, H. Kodaz, and S. Gunes Breast cancer and liver disorders classification using artificial immune recognition system (airs) with performance evaluation by fuzzy resource allocation mechanism Expert Systems with Applications 32 2007 172 183
    • (2007) Expert Systems with Applications , vol.32 , pp. 172-183
    • Polat, K.A.1    Sahan, S.2    Kodaz, H.3    Gunes, S.4
  • 23
    • 0029679031 scopus 로고    scopus 로고
    • Further experimental evidence against the utility of Occam's razor
    • G.I. Webb Further experimental evidence against the utility of Occam's razor Journal of Artificial Intelligence Research 4 1996 397 417
    • (1996) Journal of Artificial Intelligence Research , vol.4 , pp. 397-417
    • Webb, G.I.1
  • 24
    • 0002914363 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • P. Clark, and R. Boswell Rule induction with CN2: some recent improvements Y. Kodratoff, Machine learningEWSL-91 1991 Springer Berlin, Germany [p. 15163]
    • (1991) Machine learningEWSL-91
    • Clark, P.1    Boswell, R.2
  • 27
    • 62549089256 scopus 로고    scopus 로고
    • A method for improving the accuracy of data mining classification algorithms
    • N. Mastrogiannis, B. Boutsinas, and I. Giannikos A method for improving the accuracy of data mining classification algorithms Computers and Operations Research 36 10 2009 2829 2839
    • (2009) Computers and Operations Research , vol.36 , Issue.10 , pp. 2829-2839
    • Mastrogiannis, N.1    Boutsinas, B.2    Giannikos, I.3
  • 29
    • 0018465664 scopus 로고
    • A composite classifier system design: Concepts and methodology
    • B.V. Dasarathy, and B.V. Sheela A composite classifier system design: concepts and methodology Proceedings of the IEEE 67 5 1979 708 713
    • (1979) Proceedings of the IEEE , vol.67 , Issue.5 , pp. 708-713
    • Dasarathy, B.V.1    Sheela, B.V.2
  • 35
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and J.H. George Wrappers for feature subset selection Journal of Artificial Intelligence 97 12 1997 273 324 [special issue on relevance]
    • (1997) Journal of Artificial Intelligence , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    George, J.H.2
  • 37
    • 0001901666 scopus 로고
    • Induction of selective Bayesian classifiers
    • Seattle, WA, USA
    • Langley P, Sage S. Induction of selective Bayesian classifiers. In: Proceedings of UAI-94, Seattle, WA, USA, 1994. p. 399406.
    • (1994) Proceedings of UAI-94 , pp. 399-406
    • Langley, P.1    Sage, S.2
  • 38
    • 0008155075 scopus 로고
    • Searching for dependencies in Bayesian classifiers
    • Pazzani MJ. Searching for dependencies in Bayesian classifiers. In: Proceedings of AI&STAT'95, 1995. p. 23948.
    • (1995) Proceedings of AI&STAT'95 , pp. 239-248
    • Pazzani, M.J.1
  • 40
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in non-linear learning systems
    • J.E. Moody The effective number of parameters: an analysis of generalization and regularization in non-linear learning systems Journal of Advances in Neural Information Processing Systems 4 1992 847 854
    • (1992) Journal of Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 46
    • 0036643059 scopus 로고    scopus 로고
    • Decision region connectivity analysis: A method for analyzing high-dimensional classifiers
    • O. Melnik Decision region connectivity analysis: a method for analyzing high-dimensional classifiers Machine Learning 48 2002 321 351
    • (2002) Machine Learning , vol.48 , pp. 321-351
    • Melnik, O.1
  • 47
    • 85050788989 scopus 로고
    • An analysis of clique formation and structure in organizations
    • N. Tichy An analysis of clique formation and structure in organizations Administrative Science Quarterly 18 2 1973 194 208
    • (1973) Administrative Science Quarterly , vol.18 , Issue.2 , pp. 194-208
    • Tichy, N.1
  • 48
    • 0003037529 scopus 로고
    • Reducibility among combinatorial problems
    • IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
    • Karp RM. Reducibility among combinatorial problems. In: Proceedings of the symposium, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA, 1972. p. 85103.
    • (1972) Proceedings of the Symposium , pp. 85-103
    • Karp, R.M.1
  • 49
    • 0036645183 scopus 로고    scopus 로고
    • Interactively exploring hierarchical clustering results
    • J. Seo, and B. Shneiderman Interactively exploring hierarchical clustering results Computer 35 7 2002 80 86 July
    • (2002) Computer , vol.35 , Issue.7 , pp. 80-86
    • Seo, J.1    Shneiderman, B.2
  • 50
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E.H. Han, and V. Kumar CHAMELEON: a hierarchical clustering algorithm using dynamic modeling IEEE Computer 32 8 1999 68 75 August
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 51
    • 39049120226 scopus 로고    scopus 로고
    • Online tutorial at the following URL CarnegieMellonUniversity,USA
    • Moore AW. K-means and hierarchical clustering. Online tutorial at the following URL: 〈 http://www.autonlab.org/tutorials/kmeans.html 〉, Carnegie Mellon University, USA, 2010.
    • (2010) K-means and Hierarchical Clustering
    • Moore, A.W.1
  • 52
    • 84944031917 scopus 로고
    • An efficient bounding sphere
    • Ritter J. An efficient bounding sphere. In: Graphics Gems, 1990. p. 3013.
    • (1990) Graphics Gems , pp. 301-303
    • Ritter, J.1
  • 55
    • 36948999941 scopus 로고    scopus 로고
    • Website University of California, Irvine, School of Information and Computer Sciences, CA, USA
    • Asuncion A, Newman DJ. UCI-machine learning repository. Website 〈 archive.ics.uci.edu/ml/ 〉, University of California, Irvine, School of Information and Computer Sciences, CA, USA, 2010.
    • (2010) UCI-machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 65
    • 84947600287 scopus 로고    scopus 로고
    • Comparisons of QP and LP based learning from empirical data
    • V. Kecman, and T. Arthanari Comparisons of QP and LP based learning from empirical data L. Monostori, J. V′ancza, M. Ali, LNCS and LNAI 2001 Springer New York, USA 326 332
    • (2001) LNCS and LNAI , pp. 326-332
    • Kecman, V.1    Arthanari, T.2
  • 72
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • D. Nauck, and R. Kruse Obtaining interpretable fuzzy classification rules from medical data Artificial Intelligence in Medicine 16 1999 149 169
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 74
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • R. Setiono Generating concise and accurate classification rules for breast cancer diagnosis Artificial Intelligence in Medicine 18 2000 205 219
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 75
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • J. Abonyi, and H. Szeifert Supervised fuzzy clustering for the identification of fuzzy classifiers Pattern Recognition Letters 24 2003 2195 2207
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, H.2
  • 77
    • 0141801207 scopus 로고    scopus 로고
    • BSc thesis, School of Information Technology and Electrical Engineering, University of Queensland, Australia
    • Cheung N. Machine learning techniques for medical analysis. BSc thesis, School of Information Technology and Electrical Engineering, University of Queensland, Australia, 2001.
    • (2001) Machine Learning Techniques for Medical Analysis
    • Cheung, N.1
  • 80
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis
    • G.T. Van, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis Neural Computation 14 2002 1115 1147
    • (2002) Neural Computation , vol.14 , pp. 1115-1147
    • Van, G.T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6
  • 81
    • 33750455785 scopus 로고    scopus 로고
    • A new medical decision making system: Least square support vector machine (LSSVM) with fuzzy weighting pre-processing
    • E. Comaka, K. Polatb, S. Gunesb, and A. Arslana A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing Expert Systems with Applications 32 2 2007 409 414
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 409-414
    • Comaka, E.1    Polatb, K.2    Gunesb, S.3    Arslana, A.4
  • 82
    • 77956059854 scopus 로고    scopus 로고
    • Website August 2008
    • Heart S. Website: 〈 www.is.umk.pl/projects/datasets-stat.html#Heart 〉, August 2008.
    • Heart, S.1
  • 83
    • 53849141501 scopus 로고    scopus 로고
    • Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems
    • S. Ozen, and S. Gunes Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems Expert Systems with Applications 36 1 2009 386 392
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 386-392
    • Ozen, S.1    Gunes, S.2
  • 85
    • 77956057123 scopus 로고    scopus 로고
    • Website: 〈 8/2009
    • Statlog Australia Credit Approval. Website: 〈 www.is.umk.pl/ projects/datasets-stat.html#Australian 〉, 8/2009.
    • Statlog Australia Credit Approval
  • 87
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • C.L. Huang, M.C. Chen, and C.J. Wang Credit scoring with a data mining approach based on support vector machines Expert Systems with Applications 33 4 2007 847 856
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 94
    • 43249102571 scopus 로고    scopus 로고
    • Selecting and constructing features using grammatical evolution
    • D. Gavrilis, L.G. Tsoulos, and E. Dermatas Selecting and constructing features using grammatical evolution Pattern Recognition Letters 29 2008 1358 1365
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1358-1365
    • Gavrilis, D.1    Tsoulos, L.G.2    Dermatas, E.3
  • 96
  • 99
    • 60849139385 scopus 로고    scopus 로고
    • A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis
    • Z. Zhanga, Y. Shib, and G. Gao A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis Expert Systems with Applications 36 5 2009 8932 8937
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 8932-8937
    • Zhanga, Z.1    Shib, Y.2    Gao, G.3
  • 100
    • 0032618090 scopus 로고    scopus 로고
    • Accuracy of risk-adjusted mortality rate as a measure of hospital quality of care
    • J.W. Thomas, and J.P. Hofer Accuracy of risk-adjusted mortality rate as a measure of hospital quality of care Medical Care 37 1 1999 83 92
    • (1999) Medical Care , vol.37 , Issue.1 , pp. 83-92
    • Thomas, J.W.1    Hofer, J.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.