-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105-139
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0002976263
-
Recursive automatic bias selection for classifier construction
-
Brodley C.E. Recursive automatic bias selection for classifier construction. Machine Learning 20 (1995) 63-94
-
(1995)
Machine Learning
, vol.20
, pp. 63-94
-
-
Brodley, C.E.1
-
5
-
-
2442682055
-
A hybrid decision-tree/genetic algorithm method for data mining
-
Carvalho D.R., and Freitas A.A. A hybrid decision-tree/genetic algorithm method for data mining. Information Science 163 (2004) 13-35
-
(2004)
Information Science
, vol.163
, pp. 13-35
-
-
Carvalho, D.R.1
Freitas, A.A.2
-
6
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 (1998) 1895-1923
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
7
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning 40 (2000) 139-157
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
10
-
-
34250328478
-
-
J. Fürnkranz, Round robin rule learning, in: Proc. of the 18th International Conference on Machine Learning, Williamstown, MA, 2001, pp. 146-153.
-
-
-
-
12
-
-
0000856338
-
The meta-pi network - building distributed knowledge representation for robust multisourse pattern recognition
-
Hampshire J.B., and Waibel A. The meta-pi network - building distributed knowledge representation for robust multisourse pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992) 751-769
-
(1992)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.14
, pp. 751-769
-
-
Hampshire, J.B.1
Waibel, A.2
-
13
-
-
0033207482
-
Combining predictors: comparison of five meta machine learning methods
-
Hansen J.V. Combining predictors: comparison of five meta machine learning methods. Information Science 119 (1999) 91-105
-
(1999)
Information Science
, vol.119
, pp. 91-105
-
-
Hansen, J.V.1
-
15
-
-
34250373072
-
-
M.B. Harries, K. Horn, Learning stable concepts in domains with hidden changes in context, in: M. Kubat, G. Widmer (Eds.), Learning in context-sensitive domains (Workshop Notes), 13th International Conference on Machine Learning, Bari, Itali, 1996, pp. 106-122.
-
-
-
-
17
-
-
0000262562
-
Hierarchical mixture of experts and the EM algorithm
-
Jordan M.I., and Jacobs R.A. Hierarchical mixture of experts and the EM algorithm. Neural Computation 6 (1994) 181-214
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
18
-
-
34250362062
-
-
R. Kohavi, Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid, in: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 202-207.
-
-
-
-
20
-
-
37549072108
-
-
O. Lezoray, H. Cardot, Combining multiple pairwise neural networks classifiers: a comparative study, in: International Workshop on Artificial Neural Networks and Intelligent Information Processing, Barcelona, Spain, 2005, pp. 52-61.
-
-
-
-
22
-
-
0011047871
-
Dynamical selection of learning algorithms
-
Fisher C., and Lenz H. (Eds), Springer-Verlag
-
Mertz C.J. Dynamical selection of learning algorithms. In: Fisher C., and Lenz H. (Eds). Learning from Data: Artificial Intelligence and Statistics (1996), Springer-Verlag 281-290
-
(1996)
Learning from Data: Artificial Intelligence and Statistics
, pp. 281-290
-
-
Mertz, C.J.1
-
23
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Mertz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 (1999) 33-58
-
(1999)
Machine Learning
, vol.36
, pp. 33-58
-
-
Mertz, C.J.1
-
24
-
-
34250305261
-
-
C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases. .
-
-
-
-
26
-
-
34250324830
-
-
S.J. Nowlan, G.E. Hinton, Evaluation of adaptive mixtures of competing experts, in: Advances of Neural Information Processing Systems 3, Denver CO, 1990, pp. 774-780.
-
-
-
-
27
-
-
0031513627
-
neural networks for medical prognosis: quantifying the benefits of combining neural networks for survival prediction
-
Onho-Machado L., and Musen M.A. neural networks for medical prognosis: quantifying the benefits of combining neural networks for survival prediction. Connection Science 9 (1997) 71-86
-
(1997)
Connection Science
, vol.9
, pp. 71-86
-
-
Onho-Machado, L.1
Musen, M.A.2
-
28
-
-
0030327271
-
Bayesian inference in mixture-of-experts and hierarchical mixture-of-experts models with an application to speech recognition
-
Peng F., Jacobs R.A., and Tanner M.A. Bayesian inference in mixture-of-experts and hierarchical mixture-of-experts models with an application to speech recognition. Journal of the American Statistical Association 91 (1996) 953-960
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 953-960
-
-
Peng, F.1
Jacobs, R.A.2
Tanner, M.A.3
-
30
-
-
0031197672
-
A new hybrid approach in combining multiple experts to recognize handwritten numerals
-
Rahman A.F.R., and Fairhurst M.C. A new hybrid approach in combining multiple experts to recognize handwritten numerals. Pattern Recognition Letters 18 (1997) 781-790
-
(1997)
Pattern Recognition Letters
, vol.18
, pp. 781-790
-
-
Rahman, A.F.R.1
Fairhurst, M.C.2
-
32
-
-
27144463192
-
On comparing classifiers: pitfalls to avoid and a recommended approach
-
Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 (1997) 317-328
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-328
-
-
Salzberg, S.L.1
-
33
-
-
35248824715
-
-
P. Savicky, J. Fürnkranz, Combining pairwise classifiers with stacking, in: Advances on Intelligent Data Analysis V, Berlin, Germany, 2003, pp. 219-229.
-
-
-
-
35
-
-
84945708259
-
A theorem on Boolean matrices
-
Warshall S. A theorem on Boolean matrices. Journal of the ACM 9 (1962) 11-12
-
(1962)
Journal of the ACM
, vol.9
, pp. 11-12
-
-
Warshall, S.1
-
38
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
|