메뉴 건너뛰기




Volumn 177, Issue 17, 2007, Pages 3592-3612

Decision-tree instance-space decomposition with grouped gain-ratio

Author keywords

Classification; Decision trees; Instance space decomposition; Multiple classifier systems

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS;

EID: 34250314887     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2007.01.016     Document Type: Article
Times cited : (52)

References (41)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105-139
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • Brodley C.E. Recursive automatic bias selection for classifier construction. Machine Learning 20 (1995) 63-94
    • (1995) Machine Learning , vol.20 , pp. 63-94
    • Brodley, C.E.1
  • 5
    • 2442682055 scopus 로고    scopus 로고
    • A hybrid decision-tree/genetic algorithm method for data mining
    • Carvalho D.R., and Freitas A.A. A hybrid decision-tree/genetic algorithm method for data mining. Information Science 163 (2004) 13-35
    • (2004) Information Science , vol.163 , pp. 13-35
    • Carvalho, D.R.1    Freitas, A.A.2
  • 6
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 34250328478 scopus 로고    scopus 로고
    • J. Fürnkranz, Round robin rule learning, in: Proc. of the 18th International Conference on Machine Learning, Williamstown, MA, 2001, pp. 146-153.
  • 12
    • 0000856338 scopus 로고
    • The meta-pi network - building distributed knowledge representation for robust multisourse pattern recognition
    • Hampshire J.B., and Waibel A. The meta-pi network - building distributed knowledge representation for robust multisourse pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992) 751-769
    • (1992) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.14 , pp. 751-769
    • Hampshire, J.B.1    Waibel, A.2
  • 13
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: comparison of five meta machine learning methods
    • Hansen J.V. Combining predictors: comparison of five meta machine learning methods. Information Science 119 (1999) 91-105
    • (1999) Information Science , vol.119 , pp. 91-105
    • Hansen, J.V.1
  • 15
    • 34250373072 scopus 로고    scopus 로고
    • M.B. Harries, K. Horn, Learning stable concepts in domains with hidden changes in context, in: M. Kubat, G. Widmer (Eds.), Learning in context-sensitive domains (Workshop Notes), 13th International Conference on Machine Learning, Bari, Itali, 1996, pp. 106-122.
  • 17
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • Jordan M.I., and Jacobs R.A. Hierarchical mixture of experts and the EM algorithm. Neural Computation 6 (1994) 181-214
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 18
    • 34250362062 scopus 로고    scopus 로고
    • R. Kohavi, Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid, in: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 202-207.
  • 20
    • 37549072108 scopus 로고    scopus 로고
    • O. Lezoray, H. Cardot, Combining multiple pairwise neural networks classifiers: a comparative study, in: International Workshop on Artificial Neural Networks and Intelligent Information Processing, Barcelona, Spain, 2005, pp. 52-61.
  • 22
    • 0011047871 scopus 로고    scopus 로고
    • Dynamical selection of learning algorithms
    • Fisher C., and Lenz H. (Eds), Springer-Verlag
    • Mertz C.J. Dynamical selection of learning algorithms. In: Fisher C., and Lenz H. (Eds). Learning from Data: Artificial Intelligence and Statistics (1996), Springer-Verlag 281-290
    • (1996) Learning from Data: Artificial Intelligence and Statistics , pp. 281-290
    • Mertz, C.J.1
  • 23
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Mertz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 (1999) 33-58
    • (1999) Machine Learning , vol.36 , pp. 33-58
    • Mertz, C.J.1
  • 24
    • 34250305261 scopus 로고    scopus 로고
    • C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases. .
  • 26
    • 34250324830 scopus 로고    scopus 로고
    • S.J. Nowlan, G.E. Hinton, Evaluation of adaptive mixtures of competing experts, in: Advances of Neural Information Processing Systems 3, Denver CO, 1990, pp. 774-780.
  • 27
    • 0031513627 scopus 로고    scopus 로고
    • neural networks for medical prognosis: quantifying the benefits of combining neural networks for survival prediction
    • Onho-Machado L., and Musen M.A. neural networks for medical prognosis: quantifying the benefits of combining neural networks for survival prediction. Connection Science 9 (1997) 71-86
    • (1997) Connection Science , vol.9 , pp. 71-86
    • Onho-Machado, L.1    Musen, M.A.2
  • 28
    • 0030327271 scopus 로고    scopus 로고
    • Bayesian inference in mixture-of-experts and hierarchical mixture-of-experts models with an application to speech recognition
    • Peng F., Jacobs R.A., and Tanner M.A. Bayesian inference in mixture-of-experts and hierarchical mixture-of-experts models with an application to speech recognition. Journal of the American Statistical Association 91 (1996) 953-960
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 953-960
    • Peng, F.1    Jacobs, R.A.2    Tanner, M.A.3
  • 30
    • 0031197672 scopus 로고    scopus 로고
    • A new hybrid approach in combining multiple experts to recognize handwritten numerals
    • Rahman A.F.R., and Fairhurst M.C. A new hybrid approach in combining multiple experts to recognize handwritten numerals. Pattern Recognition Letters 18 (1997) 781-790
    • (1997) Pattern Recognition Letters , vol.18 , pp. 781-790
    • Rahman, A.F.R.1    Fairhurst, M.C.2
  • 32
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 (1997) 317-328
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 33
    • 35248824715 scopus 로고    scopus 로고
    • P. Savicky, J. Fürnkranz, Combining pairwise classifiers with stacking, in: Advances on Intelligent Data Analysis V, Berlin, Germany, 2003, pp. 219-229.
  • 35
    • 84945708259 scopus 로고
    • A theorem on Boolean matrices
    • Warshall S. A theorem on Boolean matrices. Journal of the ACM 9 (1962) 11-12
    • (1962) Journal of the ACM , vol.9 , pp. 11-12
    • Warshall, S.1
  • 36
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time-series - discovering regimes and avoiding overfitting
    • Weigend A.S., Mangeas M., and Srivastava A.N. Nonlinear gated experts for time-series - discovering regimes and avoiding overfitting. International Journal of Neural Systems 6 (1995) 373-399
    • (1995) International Journal of Neural Systems , vol.6 , pp. 373-399
    • Weigend, A.S.1    Mangeas, M.2    Srivastava, A.N.3
  • 38
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.