메뉴 건너뛰기




Volumn 36, Issue 5, 2009, Pages 9240-9249

An application of a new meta-heuristic for optimizing the classification accuracy when analyzing some medical datasets

Author keywords

Classification errors; Genetic algorithms; HBA; Medical data mining; Optimization

Indexed keywords

ALGORITHMS; DATA MINING; ERRORS; HEURISTIC ALGORITHMS; HEURISTIC METHODS; INFORMATION MANAGEMENT; LEARNING SYSTEMS; MEDICAL APPLICATIONS; OPTIMIZATION;

EID: 60849122524     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.12.007     Document Type: Article
Times cited : (21)

References (35)
  • 1
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J., and Szeifert H. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24 (2003) 2195-2207
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, H.2
  • 2
    • 60849119594 scopus 로고    scopus 로고
    • Artificial Neural Network Toolbox 6.0 and Statistics Toolbox 6.0, Matlab Version 7.0
    • Artificial Neural Network Toolbox 6.0 and Statistics Toolbox 6.0, Matlab Version 7.0. .
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • School of Information and Computer Sciences, University of California, Irvine, CA, USA
    • Asuncion, A., Newman, D. J. (2007). UCI-Machine Learning Repository. School of Information and Computer Sciences, University of California, Irvine, CA, USA.
    • (2007) UCI-Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 10044289034 scopus 로고    scopus 로고
    • A support vector machine approach to decision trees,
    • Rensselaer Polytechnic Institute, Troy, NY, USA
    • Bennet, K. P., Blue, J. A. (1997). A support vector machine approach to decision trees,. Math Report, No. 97-100, Rensselaer Polytechnic Institute, Troy, NY, USA.
    • (1997) Math Report , Issue.97-100
    • Bennet, K.P.1    Blue, J.A.2
  • 7
    • 0141801207 scopus 로고    scopus 로고
    • BSc thesis, School of Information Technology and Electrical Engineering, University of Queensland, Australia
    • Cheung, N. (2001). Machine learning techniques for medical analysis. BSc thesis, School of Information Technology and Electrical Engineering, University of Queensland, Australia.
    • (2001) Machine learning techniques for medical analysis
    • Cheung, N.1
  • 8
    • 33750455785 scopus 로고    scopus 로고
    • A new medical decision making system: Least square support vector machine (LSSVM) with fuzzy weighting pre-processing
    • (February)
    • Çomaka E., Polatb K., Güneşb S., and Arslana A. A new medical decision making system: Least square support vector machine (LSSVM) with fuzzy weighting pre-processing. Expert Systems with Applications 32 2 (2007) 409-414 (February)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 409-414
    • Çomaka, E.1    Polatb, K.2    Güneşb, S.3    Arslana, A.4
  • 12
    • 0012618885 scopus 로고    scopus 로고
    • RIAC: A rule induction algorithm based on approximate classification
    • Technical Report, No. CS 96-06, University of Regina, Regina, Canada
    • Hamilton, H. J., Shan, N., Cercone, N. (1996). RIAC: A rule induction algorithm based on approximate classification. Technical Report, No. CS 96-06, University of Regina, Regina, Canada.
    • (1996)
    • Hamilton, H.J.1    Shan, N.2    Cercone, N.3
  • 14
    • 84947600287 scopus 로고    scopus 로고
    • Comparisons of QP and LP based learning from empirical data
    • Monostori L., V́ancza J., and Ali M. (Eds), Springer, New York, NY, USA (June)
    • Kecman V., and Arthanari T. Comparisons of QP and LP based learning from empirical data. In: Monostori L., V́ancza J., and Ali M. (Eds). LNCS and LNAI (2001), Springer, New York, NY, USA 326-332 (June)
    • (2001) LNCS and LNAI , pp. 326-332
    • Kecman, V.1    Arthanari, T.2
  • 18
    • 0003612091 scopus 로고
    • Machine learning neural and statistical classification
    • Prentice Hall, Englewood Cliffs, NJ, USA
    • Michie D., Spiegelhalter D.J., and Taylor C.C. Machine learning neural and statistical classification. Series artificial intelligence (1994), Prentice Hall, Englewood Cliffs, NJ, USA 157-160
    • (1994) Series artificial intelligence , pp. 157-160
    • Michie, D.1    Spiegelhalter, D.J.2    Taylor, C.C.3
  • 19
    • 0242721780 scopus 로고    scopus 로고
    • Constructing fuzzy ensembles for pattern classification problems
    • man and cybernetics (Washington, DC, USA October
    • Nakashima, T., Nakai, G., Ishibuchi, H. (2003). Constructing fuzzy ensembles for pattern classification problems. In Proceedings of the international conference on systems, man and cybernetics (Vol. 4, pp. 3200-3205). Washington, DC, USA (October).
    • (2003) Proceedings of the international conference on systems , vol.4 , pp. 3200-3205
    • Nakashima, T.1    Nakai, G.2    Ishibuchi, H.3
  • 20
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16 (1999) 149-169
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 23
    • 84890008245 scopus 로고    scopus 로고
    • The impact of overfitting and overgeneralization on the classification accuracy in data mining
    • Maimon O., and Rokach L. (Eds), Springer, New York, NY, USA
    • Pham H.N.A., and Triantaphyllou E. The impact of overfitting and overgeneralization on the classification accuracy in data mining. In: Maimon O., and Rokach L. (Eds). Soft computing for knowledge discovery and data mining, part 4 (2007), Springer, New York, NY, USA 391-431
    • (2007) Soft computing for knowledge discovery and data mining, part 4 , pp. 391-431
    • Pham, H.N.A.1    Triantaphyllou, E.2
  • 24
    • 43349086449 scopus 로고    scopus 로고
    • Prediction of diabetes by employing a new data mining approach which balances fitting and generalization
    • Lee R.Y. (Ed), Springer, Germany
    • Pham H.N.A., and Triantaphyllou E. Prediction of diabetes by employing a new data mining approach which balances fitting and generalization. In: Lee R.Y. (Ed). Studies in computation intelligence Vol. 131 (2008), Springer, Germany 11-26
    • (2008) Studies in computation intelligence , vol.131 , pp. 11-26
    • Pham, H.N.A.1    Triantaphyllou, E.2
  • 25
    • 33748147286 scopus 로고    scopus 로고
    • Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism
    • Polat K.A., Sahan S., Kodaz H., and Gunes S. Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Systems with Applications 32 (2007) 172-183
    • (2007) Expert Systems with Applications , vol.32 , pp. 172-183
    • Polat, K.A.1    Sahan, S.2    Kodaz, H.3    Gunes, S.4
  • 26
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan J.R. Improved use of continuous attributes in C4.5. Artificial Intelligence Research 4 (1996) 77-90
    • (1996) Artificial Intelligence Research , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 28
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 (2000) 205-219
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 32
    • 0032618090 scopus 로고    scopus 로고
    • Accuracy of risk-adjusted mortality rate as a measure of hospital quality of care
    • Thomas J.W., and Hofer J.P. Accuracy of risk-adjusted mortality rate as a measure of hospital quality of care. Medical Care 37 1 (1999) 83-92
    • (1999) Medical Care , vol.37 , Issue.1 , pp. 83-92
    • Thomas, J.W.1    Hofer, J.P.2
  • 33
    • 0024897596 scopus 로고
    • Landscape ecology: The effects of pattern on process
    • Turner M.G. Landscape ecology: The effects of pattern on process. Annual Review of Ecology and Systematics 20 (1989) 171-197
    • (1989) Annual Review of Ecology and Systematics , vol.20 , pp. 171-197
    • Turner, M.G.1
  • 34
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers Gaussian processes and Kernel Fisher discriminant analysis
    • Van G.T., Suykens J.A.K., Lanckriet G., Lambrechts A., de Moor B., and Vandewalle J. Bayesian framework for least squares support vector machine classifiers Gaussian processes and Kernel Fisher discriminant analysis. Neural Computation 14 (2002) 1115-1147
    • (2002) Neural Computation , vol.14 , pp. 1115-1147
    • Van, G.T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    de Moor, B.5    Vandewalle, J.6
  • 35
    • 0001512820 scopus 로고
    • An empirical comparison of pattern recognition, neural nets, and machine learning classification methods
    • international joint conference on artificial intelligence pp, Detroit, MI, USA
    • Weiss, S. M., Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In Proceedings of the 11th international joint conference on artificial intelligence pp. 781-787. Detroit, MI, USA.
    • (1989) Proceedings of the 11th , pp. 781-787
    • Weiss, S.M.1    Kapouleas, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.