메뉴 건너뛰기




Volumn 32, Issue 1, 2007, Pages 172-183

Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism

Author keywords

AIRS; Breast Cancer dataset; Fuzzy resource allocation; k Fold cross validation; Liver Disorders dataset

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER AIDED DIAGNOSIS; DATA STRUCTURES; FUZZY SETS; IMMUNOLOGY; MEDICAL PROBLEMS; RESOURCE ALLOCATION; TUMORS;

EID: 33748147286     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2005.11.024     Document Type: Article
Times cited : (84)

References (27)
  • 2
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J., and Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24 (2003) 2195-2207
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 3
    • 33748171235 scopus 로고    scopus 로고
    • Available from ftp://ftp.ics.uci.edu/pub/machine-learning-databases, last accessed: 7 April 2005.
  • 4
    • 33748169900 scopus 로고    scopus 로고
    • Available from http://medlineplus.gov/, last accessed: 15 August 2005.
  • 5
    • 33748188221 scopus 로고    scopus 로고
    • Bennet, K. P., & Blue, J. A. (1997). A support vector machine approach to decision trees. Rensselaer Polytechnic Institute, Math Report, No. 97-100.
  • 6
    • 33748209783 scopus 로고    scopus 로고
    • BUPA Liver Disorders Dataset. UCI repository of machine learning databases. Available from ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liverdisorders/bupa.data, last accessed: 15 August 2005.
  • 7
    • 33748185840 scopus 로고    scopus 로고
    • Cheung, N. (2001). Machine learning techniques for medical analysis. School of Information Technology and Electrical Engineering. BsC thesis, University of Queenland.
  • 9
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine 34 2 (2005) 113-127
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 10
    • 0037004445 scopus 로고    scopus 로고
    • Goodman, D. E., Boggess, L., & Watkins, A. (2002). Artificial immune system classification of multiple-class problems. In The proceedings of the artificial neural networks in engineering ANNIE (2002) (pp. 179-183).
  • 11
    • 0141682945 scopus 로고    scopus 로고
    • Goodman, D. E., Boggess, L., & Watkins, A. (2003). An investigation into the source of power for AIRS, an artificial immune classification system. In Proceedings of the international joint conference on neural networks (IJCNN'03), Portland, Oregon, July 2003 (pp. 1678-1683).
  • 12
    • 4344594693 scopus 로고    scopus 로고
    • Hamaker, J., & Boggess, L. (2004). Non-Euclidean distance measures in AIRS, an artificial immune classification system. In The proceedings of the congress on evolutionary computation (CEC2004), Portland, Oregon, USA (Vol. 1, pp. 1067-1073).
  • 13
    • 33748193927 scopus 로고    scopus 로고
    • Hamilton, H. J., Shan, N., & Cercone, N. (1996). RIAC: A rule induction algorithm based on approximate classification. Tech. Rep. CS 96-06, University of Regina.
  • 14
    • 33748128146 scopus 로고    scopus 로고
    • Ki{dotless}yan, T., & Yi{dotless}ldi{dotless}ri{dotless}m, T. (2003). Breast cancer diagnosis using statistical neural Networks. In XII TAINN symposium proceedings, Çanakkale, Turkey (Vol. E(8), p. 754).
  • 16
    • 33748182555 scopus 로고    scopus 로고
    • Lee, Y. J., & Mangasarian, O. L. (2001b). RSVM: Reduced support vector machines. In Proceedings of the first SIAM international conference on data mining.
  • 17
    • 33748132724 scopus 로고    scopus 로고
    • Marwah, G., & Boggess, L. (2002). Artificial immune systems for classification: Some issues. In Proceedings of the first international conference on artificial immune systems, University of Kent at Canterbury, England (pp. 149-153).
  • 18
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16 (1999) 149-169
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 20
    • 0018567632 scopus 로고
    • Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination
    • Perelson A.S., and Oster G.F. Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination. Journal of Theoretical Biology 81 (1979) 645-670
    • (1979) Journal of Theoretical Biology , vol.81 , pp. 645-670
    • Perelson, A.S.1    Oster, G.F.2
  • 21
    • 33748168951 scopus 로고    scopus 로고
    • Pham, D. T., Dimov, S. S., & Salem, Z. (2000). Technique for selecting examples in inductive learning. In European symposium on intelligent techniques (ESIT 2000), Aachen-Germany (pp. 119-127).
  • 23
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 (2000) 205-219
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 24
    • 33748202720 scopus 로고    scopus 로고
    • Ster, B., & Dobnikar, A. (1996). Neural networks in medical diagnosis: Comparison with other methods. In The proceedings of the international conference on engineering applications of neural networks (EANN '96) (pp. 427-430).
  • 25
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis
    • Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., and Vandewalle J. Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis. Neural Computation 14 5 (2002) 1115-1147
    • (2002) Neural Computation , vol.14 , Issue.5 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6
  • 26
    • 33748200424 scopus 로고    scopus 로고
    • Watkins, A. (2001). AIRS: A resource limited artificial immune classifier. Master Thesis, Mississippi State University.
  • 27
    • 33748183870 scopus 로고    scopus 로고
    • Yalçi{dotless}n, M., & Yi{dotless}ldi{dotless}ri{dotless}m, T. (2003). Karaciǧer bozukluklari{dotless}ni{dotless}n yapay sinir aǧlari{dotless} ile teşhisi. In Biyomedikal Mühendisliǧi Ulusal Toplanti{dotless}si{dotless} (BIYOMUT 2003), Istanbul-Turkiye (pp. 293-297).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.