-
1
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays
-
June
-
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96, 6745-6750, June.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
2
-
-
34547970695
-
Neural Networks and Machine Learning, NATO ASI Series, Series F
-
Bishop, C. M, Ed, Berlin: Springer-Verlag
-
Bishop, C. M. (Ed.) (1998). Neural Networks and Machine Learning, NATO ASI Series, Series F: Computer and Systems Sciences, 168, Berlin: Springer-Verlag.
-
(1998)
Computer and Systems Sciences
, pp. 168
-
-
-
3
-
-
0000876414
-
Local Learning Algorithms
-
Bottou, L. and Vapnik, V. (1992). Local Learning Algorithms, Neural Computing, 4, 888-890.
-
(1992)
Neural Computing
, vol.4
, pp. 888-890
-
-
Bottou, L.1
Vapnik, V.2
-
4
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
San Francisco, CA
-
th ICML, 82-90, San Francisco, CA.
-
(1998)
th ICML
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
5
-
-
0036161011
-
Choosing kernel parameters for support vector machines
-
Chapelle, O. Vapnik, V. Bousquet, O. and Mukherjee, S. (2002). Choosing kernel parameters for support vector machines. Machine Learning, 46(1-3), 131-159.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
6
-
-
0000494466
-
Optimal Brain Damage
-
Le Cun, Y., Denker, J., and Sofia, S. (1990). Optimal Brain Damage. Advances in Neural Information Processing Systems 2, 598-605.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 598-605
-
-
Le Cun, Y.1
Denker, J.2
Sofia, S.3
-
7
-
-
0042466486
-
Minimal kernel classifiers
-
Fung, G., Mangasarian, O. L., and Smola, A. J. (2002). Minimal kernel classifiers. Journal of Machine Learning Research 3, 303-321.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 303-321
-
-
Fung, G.1
Mangasarian, O.L.2
Smola, A.J.3
-
8
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gassenbeek, M. Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gassenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
9
-
-
0023843391
-
Analysis of Hidden Unitsin a Layered Network Trained to Classify Sonar Targets
-
Gorman, R. P., and Sejnowski, T. J. (1988). Analysis of Hidden Unitsin a Layered Network Trained to Classify Sonar Targets, Neural Networks, 1, 75-89.
-
(1988)
Neural Networks
, vol.1
, pp. 75-89
-
-
Gorman, R.P.1
Sejnowski, T.J.2
-
10
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Weston J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389-422.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
13
-
-
0037277806
-
Fast Minimization of structural risk by nearest neighbor rule
-
Karacal, B., and Krim, H. (2002). Fast Minimization of structural risk by nearest neighbor rule. IEEE transactions on neural networks, 14(1), 127-137.
-
(2002)
IEEE transactions on neural networks
, vol.14
, Issue.1
, pp. 127-137
-
-
Karacal, B.1
Krim, H.2
-
14
-
-
34547987633
-
-
Luntz, A. and Brailovsky, V. (1969). On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica, 3.
-
Luntz, A. and Brailovsky, V. (1969). On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica, 3.
-
-
-
-
15
-
-
0037165140
-
Prediction of central nervous system embryonal tumor outcome based on gene expression
-
Pomeroy, S.L., Tamayo, P. Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T. Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., and Golub, T.R. (2002). Prediction of central nervous system embryonal tumor outcome based on gene expression. Letters to Nature, Nature, 415, 436-442.
-
(2002)
Letters to Nature, Nature
, vol.415
, pp. 436-442
-
-
Pomeroy, S.L.1
Tamayo, P.2
Gaasenbeek, M.3
Sturla, L.M.4
Angelo, M.5
McLaughlin, M.E.6
Kim, J.Y.H.7
Goumnerova, L.C.8
Black, P.M.9
Lau, C.10
Allen, J.C.11
Zagzag, D.12
Olson, J.M.13
Curran, T.14
Wetmore, C.15
Biegel, J.A.16
Poggio, T.17
Mukherjee, S.18
Rifkin, R.19
Califano, A.20
Stolovitzky, G.21
Louis, D.N.22
Mesirov, J.P.23
Lander, E.S.24
Golub, T.R.25
more..
-
16
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. JMLR special Issue on variable and Feature Selection 3, 1371-1382.
-
(2003)
JMLR special Issue on variable and Feature Selection
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
17
-
-
0034248248
-
Hyperspectral imagery: Clutter adaptation in anomaly detection
-
Schweizer, S. and Moura, J. (2000). Hyperspectral imagery: clutter adaptation in anomaly detection. IEEE Trans. on Information Theory, vol. 46(5), 1855-1871.
-
(2000)
IEEE Trans. on Information Theory
, vol.46
, Issue.5
, pp. 1855-1871
-
-
Schweizer, S.1
Moura, J.2
-
18
-
-
18244409933
-
Diffuse Large B-CeIl Lymphoma Outcome Prediction by Gene Expression Profiling and Supervised Machine Learning
-
Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., Ray, T.S., Koval, M.A., Last, K.W., Norton, A., Lister, T.A., Mesirov, J., Neuberg, D.S., Lander, E.S., Aster, J.C., Golub, T.R. (2002). Diffuse Large B-CeIl Lymphoma Outcome Prediction by Gene Expression Profiling and Supervised Machine Learning. Nature Medicine, vol.8, 68-74.
-
(2002)
Nature Medicine
, vol.8
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Weng, A.P.4
Kutok, J.L.5
Aguiar, R.C.T.6
Gaasenbeek, M.7
Angelo, M.8
Reich, M.9
Pinkus, G.S.10
Ray, T.S.11
Koval, M.A.12
Last, K.W.13
Norton, A.14
Lister, T.A.15
Mesirov, J.16
Neuberg, D.S.17
Lander, E.S.18
Aster, J.C.19
Golub, T.R.20
more..
-
20
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik, V. and Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2000
-
(2000)
Neural Computation
, vol.12
, Issue.9
-
-
Vapnik, V.1
Chapelle, O.2
-
21
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
West, B., Blanchette, C., Dressman, H. Huang, E. and et.al. (2001). Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA, 98, 11462-11467.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 11462-11467
-
-
West, B.1
Blanchette, C.2
Dressman, H.3
Huang, E.4
and, et.al.5
-
22
-
-
0001001098
-
Feature selection for support vector machines
-
Weston, J., Mukherjee, S., Chapelle, O. Pontil, M. Poggio, T. and Vapnik, V. (2000). Feature selection for support vector machines. In Advances in Neural Information Processing Systems.
-
(2000)
Advances in Neural Information Processing Systems
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
23
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston, J. Elisseeff, A. Scholkopf, B. and Tipping, M.(2003) Use of the zero-norm with linear models and kernel methods. JMLR special Issue on variable and Feature Selection 3, 1439-1461.
-
(2003)
JMLR special Issue on variable and Feature Selection
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Scholkopf, B.3
Tipping, M.4
-
24
-
-
33746131974
-
Kernel-Based Distance Metric Learning for Microarray Data Classification
-
Xiong, H. and Chen, X. (2006). Kernel-Based Distance Metric Learning for Microarray Data Classification. BMC Bioinformatics, 7:299.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 299
-
-
Xiong, H.1
Chen, X.2
|