메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 153-160

Minimum reference set based feature selection for small sample classifications

Author keywords

[No Author keywords available]

Indexed keywords

EMBEDDED SYSTEMS; OPTIMIZATION; PROBLEM SOLVING; RISK MANAGEMENT; SUPPORT VECTOR MACHINES;

EID: 34547984193     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273516     Document Type: Conference Paper
Times cited : (23)

References (24)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays
    • June
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96, 6745-6750, June.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 2
    • 34547970695 scopus 로고    scopus 로고
    • Neural Networks and Machine Learning, NATO ASI Series, Series F
    • Bishop, C. M, Ed, Berlin: Springer-Verlag
    • Bishop, C. M. (Ed.) (1998). Neural Networks and Machine Learning, NATO ASI Series, Series F: Computer and Systems Sciences, 168, Berlin: Springer-Verlag.
    • (1998) Computer and Systems Sciences , pp. 168
  • 3
    • 0000876414 scopus 로고
    • Local Learning Algorithms
    • Bottou, L. and Vapnik, V. (1992). Local Learning Algorithms, Neural Computing, 4, 888-890.
    • (1992) Neural Computing , vol.4 , pp. 888-890
    • Bottou, L.1    Vapnik, V.2
  • 4
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • San Francisco, CA
    • th ICML, 82-90, San Francisco, CA.
    • (1998) th ICML , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing kernel parameters for support vector machines
    • Chapelle, O. Vapnik, V. Bousquet, O. and Mukherjee, S. (2002). Choosing kernel parameters for support vector machines. Machine Learning, 46(1-3), 131-159.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 9
    • 0023843391 scopus 로고
    • Analysis of Hidden Unitsin a Layered Network Trained to Classify Sonar Targets
    • Gorman, R. P., and Sejnowski, T. J. (1988). Analysis of Hidden Unitsin a Layered Network Trained to Classify Sonar Targets, Neural Networks, 1, 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0037277806 scopus 로고    scopus 로고
    • Fast Minimization of structural risk by nearest neighbor rule
    • Karacal, B., and Krim, H. (2002). Fast Minimization of structural risk by nearest neighbor rule. IEEE transactions on neural networks, 14(1), 127-137.
    • (2002) IEEE transactions on neural networks , vol.14 , Issue.1 , pp. 127-137
    • Karacal, B.1    Krim, H.2
  • 14
    • 34547987633 scopus 로고    scopus 로고
    • Luntz, A. and Brailovsky, V. (1969). On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica, 3.
    • Luntz, A. and Brailovsky, V. (1969). On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica, 3.
  • 16
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. JMLR special Issue on variable and Feature Selection 3, 1371-1382.
    • (2003) JMLR special Issue on variable and Feature Selection , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 17
    • 0034248248 scopus 로고    scopus 로고
    • Hyperspectral imagery: Clutter adaptation in anomaly detection
    • Schweizer, S. and Moura, J. (2000). Hyperspectral imagery: clutter adaptation in anomaly detection. IEEE Trans. on Information Theory, vol. 46(5), 1855-1871.
    • (2000) IEEE Trans. on Information Theory , vol.46 , Issue.5 , pp. 1855-1871
    • Schweizer, S.1    Moura, J.2
  • 20
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik, V. and Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2000
    • (2000) Neural Computation , vol.12 , Issue.9
    • Vapnik, V.1    Chapelle, O.2
  • 21
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer by using gene expression profiles
    • West, B., Blanchette, C., Dressman, H. Huang, E. and et.al. (2001). Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA, 98, 11462-11467.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 11462-11467
    • West, B.1    Blanchette, C.2    Dressman, H.3    Huang, E.4    and, et.al.5
  • 24
    • 33746131974 scopus 로고    scopus 로고
    • Kernel-Based Distance Metric Learning for Microarray Data Classification
    • Xiong, H. and Chen, X. (2006). Kernel-Based Distance Metric Learning for Microarray Data Classification. BMC Bioinformatics, 7:299.
    • (2006) BMC Bioinformatics , vol.7 , pp. 299
    • Xiong, H.1    Chen, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.