메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2375-2383

A hybrid LDA and genetic algorithm for gene selection and classification of microarray data

Author keywords

Classification; Dedicated genetic algorithm; Gene selection; Linear discriminant analysis

Indexed keywords

COMPUTATIONAL EXPERIMENT; CROSSOVER AND MUTATION; DATA SETS; EXPERIMENTAL PROTOCOLS; FISHER'S LINEAR DISCRIMINANT ANALYSIS; FITNESS FUNCTIONS; GA ALGORITHM; GENE SELECTION; INFORMATIVE GENES; LDA CLASSIFIERS; LINEAR DISCRIMINANT ANALYSIS; MICROARRAY DATA; PREDICTION ACCURACY; PREDICTIVE ACCURACY; SUPERVISED CLASSIFICATION;

EID: 77955334667     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.03.024     Document Type: Article
Times cited : (63)

References (43)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large (b)-cell lymphoma identified by gene expression profiling
    • February
    • Alizadeh A., Eisen M.B., et al. Distinct types of diffuse large (b)-cell lymphoma identified by gene expression profiling. Nature 2000, 403(February):503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1    Eisen, M.B.2
  • 2
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: from disarray to consolidation and consensus
    • Allison D.B., Cui X., Page G.P., Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nature Reviews Genetics 2006, 7(1):55-65.
    • (2006) Nature Reviews Genetics , vol.7 , Issue.1 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 1999, 96:6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2
  • 4
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C., McLachlan G. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. USA 2002, 99(10):6562-6566.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 5
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor A., Bruhn L., et al. Tissue classification with gene expression profiles. Journal of Computational Biology 2000, 7(3-4):559-583.
    • (2000) Journal of Computational Biology , vol.7 , Issue.3-4 , pp. 559-583
    • Ben-Dor, A.1    Bruhn, L.2
  • 7
  • 8
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto U., Dougherty E.R. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 2004, 20(3):374-380.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.R.2
  • 9
    • 34247154511 scopus 로고    scopus 로고
    • Cancer classification using ensemble of neural networks with multiple significant gene subsets
    • Cho S.-B., Won H.-H. Cancer classification using ensemble of neural networks with multiple significant gene subsets. Applied Intelligence 2007, 26(3):243-250.
    • (2007) Applied Intelligence , vol.26 , Issue.3 , pp. 243-250
    • Cho, S.-B.1    Won, H.-H.2
  • 10
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. Bioinformatics and Computational Biology 2005, 3(2):185-206.
    • (2005) Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-206
    • Ding, C.1    Peng, H.2
  • 11
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97:77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 12
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association 1983, 78(382):316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 13
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T., Cristianini N., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.1    Cristianini, N.2
  • 14
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T., Slonim D., Loh M., Downing J., Caligiuri M., Bloomfield C., Lander E., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Loh, M.3    Downing, J.4    Caligiuri, M.5    Bloomfield, C.6    Lander, E.7
  • 15
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon G.J., Jensen R.V., Ramaswamy S., Richards W.G., Sugarbaker D.J., Bueno R., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 2002, 17(62):4963-4967.
    • (2002) Cancer Research , vol.17 , Issue.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Ramaswamy, S.3    Richards, W.G.4    Sugarbaker, D.J.5    Bueno, R.6
  • 16
  • 17
    • 10244259163 scopus 로고    scopus 로고
    • Prediction of colon cancer using an evolutionary neural network
    • Kim K.-J., Cho S.-B. Prediction of colon cancer using an evolutionary neural network. Neurocomputing 2004, 61:361-379.
    • (2004) Neurocomputing , vol.61 , pp. 361-379
    • Kim, K.-J.1    Cho, S.-B.2
  • 18
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection, in: S. Mateo (Eds.), Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, CA
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection, in: S. Mateo (Eds.), Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, CA, 1995, pp. 1137-1143.
    • (1995) , pp. 1137-1143
    • Kohavi, R.1
  • 19
    • 58749086251 scopus 로고    scopus 로고
    • Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data
    • Lee S. Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data. Statistical Methods in Medical Research 2008, 17:635-642.
    • (2008) Statistical Methods in Medical Research , vol.17 , pp. 635-642
    • Lee, S.1
  • 20
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method
    • Li L., Weinberg C.R., Darden T.A., Pedersen L.G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method. Bioinformatics 2001, 17(12):1131-1142.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 21
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • Li L., Jiang W., Li X., Moser K.L., Guo Z., Du L., Wang Q., Topol E.J., Wang Q., Rao S. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 2005, 85:16-23.
    • (2005) Genomics , vol.85 , pp. 16-23
    • Li, L.1    Jiang, W.2    Li, X.3    Moser, K.L.4    Guo, Z.5    Du, L.6    Wang, Q.7    Topol, E.J.8    Wang, Q.9    Rao, S.10
  • 22
    • 47649097303 scopus 로고    scopus 로고
    • Partial least squares based dimension reduction with gene selection for tumor classification, in: Proceedings of IEEE Seventh International Symposium on Bioinformatics and Bioengineering
    • G.Z. Li, X.Q. Zeng, J.Y. Yang, M.Q. Yang, Partial least squares based dimension reduction with gene selection for tumor classification, in: Proceedings of IEEE Seventh International Symposium on Bioinformatics and Bioengineering, 2007, pp. 1439-1444.
    • (2007) , pp. 1439-1444
    • Li, G.Z.1    Zeng, X.Q.2    Yang, J.Y.3    Yang, M.Q.4
  • 23
    • 39749192053 scopus 로고    scopus 로고
    • Gene selection using genetic algorithm and support vectors machines
    • Li S., Wu X., Hu X. Gene selection using genetic algorithm and support vectors machines. Soft Computing 2008, 12(7):693-698.
    • (2008) Soft Computing , vol.12 , Issue.7 , pp. 693-698
    • Li, S.1    Wu, X.2    Hu, X.3
  • 24
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • Liu B., Cui Q., Jiang T., Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004, 5:136(138):1-12.
    • (2004) BMC Bioinformatics , Issue.138 , pp. 1-12
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 25
    • 20744448405 scopus 로고    scopus 로고
    • Multiclass cancer classification and biomarker discovery using GA-based algorithms
    • Liu J.J., Cutler G., Li W., Pan Z., Peng S., Hoey T., Chen L., Ling X.B. Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 2005, 21(11):2691-2697.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2691-2697
    • Liu, J.J.1    Cutler, G.2    Li, W.3    Pan, Z.4    Peng, S.5    Hoey, T.6    Chen, L.7    Ling, X.B.8
  • 26
    • 24644477601 scopus 로고    scopus 로고
    • Bayesian learning with local support vector machines for cancer classification with gene expression data
    • Springer
    • Marchiori E., Sebag M. Bayesian learning with local support vector machines for cancer classification with gene expression data. EvoWorkshops, Lecture Notes in Computer Science 2005, vol. 3449. Springer, pp. 74-83.
    • (2005) EvoWorkshops, Lecture Notes in Computer Science , vol.3449 , pp. 74-83
    • Marchiori, E.1    Sebag, M.2
  • 27
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • Ooi C.H., Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003, 19(1):37-44.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 29
    • 35449001649 scopus 로고    scopus 로고
    • A comparison of generalized linear discriminant analysis algorithms
    • Park H., Park C. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition 2008, 41(3):1083-1097.
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 1083-1097
    • Park, H.1    Park, C.2
  • 30
    • 0344872506 scopus 로고    scopus 로고
    • Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
    • Peng S., Xu Q., Ling X.B., Peng X., Du W., Chen L. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Letters 2003, 555(2):358-362.
    • (2003) FEBS Letters , vol.555 , Issue.2 , pp. 358-362
    • Peng, S.1    Xu, Q.2    Ling, X.B.3    Peng, X.4    Du, W.5    Chen, L.6
  • 31
    • 85072725799 scopus 로고    scopus 로고
    • A hybrid approach for biomarker discovery from microarray gene expression data
    • Peng Y., Li W., Liu Y. A hybrid approach for biomarker discovery from microarray gene expression data. Cancer Informatics 2006, 2:301-311.
    • (2006) Cancer Informatics , vol.2 , pp. 301-311
    • Peng, Y.1    Li, W.2    Liu, Y.3
  • 33
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy S.L., Tamayo P., et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415:436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2
  • 34
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • January
    • Simon R., Radmacher M.D., Dobbin K., McShane L.M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute January 2003, 95(1):14-18.
    • (2003) Journal of the National Cancer Institute , vol.95 , Issue.1 , pp. 14-18
    • Simon, R.1    Radmacher, M.D.2    Dobbin, K.3    McShane, L.M.4
  • 36
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan A.C., Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2003, 2(2):75-83.
    • (2003) Applied Bioinformatics , vol.2 , Issue.2 , pp. 75-83
    • Tan, A.C.1    Gilbert, D.2
  • 37
    • 34250773981 scopus 로고    scopus 로고
    • Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis, in: Proceedings of the Evolving Fuzzy Systems
    • Z. Wang, V. Palade, Y. Xu, Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis, in: Proceedings of the Evolving Fuzzy Systems, 2006, pp. 241-246.
    • (2006) , pp. 241-246
    • Wang, Z.1    Palade, V.2    Xu, Y.3
  • 38
    • 33947234670 scopus 로고    scopus 로고
    • Generalized discriminant analysis for tumor classification with gene expression data
    • Yang W.-H., Dai D.-Q., Yan H. Generalized discriminant analysis for tumor classification with gene expression data. Machine Learning and Cybernetics 2006, 1:4322-4327.
    • (2006) Machine Learning and Cybernetics , vol.1 , pp. 4322-4327
    • Yang, W.-H.1    Dai, D.-Q.2    Yan, H.3
  • 39
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Ye J. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research 2005, 6:483-502.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 483-502
    • Ye, J.1
  • 41
    • 38049081202 scopus 로고    scopus 로고
    • Informative gene selection and tumor classification by null space LDA for microarray data
    • Springer
    • Yue F., Wang K., Zuo W. Informative gene selection and tumor classification by null space LDA for microarray data. ESCAPE'07, Lecture Notes in Computer Science 2007, vol. 4614. Springer, pp. 435-446.
    • (2007) ESCAPE'07, Lecture Notes in Computer Science , vol.4614 , pp. 435-446
    • Yue, F.1    Wang, K.2    Zuo, W.3
  • 42
    • 38049153795 scopus 로고    scopus 로고
    • An effective gene selection method based on relevance analysis and discernibility matrix, in: PAKDD, Lecture Notes in Computer Science
    • L. Zhang, Z. Li, H. Chen, An effective gene selection method based on relevance analysis and discernibility matrix, in: PAKDD, Lecture Notes in Computer Science, vol. 4426, 2007, pp. 1088-1095.
    • (2007) , vol.4426 , pp. 1088-1095
    • Zhang, L.1    Li, Z.2    Chen, H.3
  • 43
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Zhu Z., Ong Y.S., Dash M. Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognition 2007, 40(11):3236-3248.
    • (2007) Pattern Recognition , vol.40 , Issue.11 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.S.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.