메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages

A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification

Author keywords

Biomarker discovery; Cancer classification; Gene expression; Gene selection; Microarray

Indexed keywords

BIOLOGICAL MARKER;

EID: 85072725799     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.1177/117693510600200024     Document Type: Article
Times cited : (58)

References (28)
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • and
    • Blum A.L., and Langley P., 1997. Selection of relevant features and examples in machine learning, Artificial Intelligence, 245–271.
    • (1997) Artificial Intelligence , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 4
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with Gaussian processes
    • and
    • Chu W., Ghahramani Z., Falciani F., and Wild D.L., 2005. Biomarker discovery in microarray gene expression data with Gaussian processes, Bioinformatics, 21: 3385–3393.
    • (2005) Bioinformatics , vol.21 , pp. 3385-3393
    • Chu, W.1    Ghahramani, Z.2    Falciani, F.3    Wild, D.L.4
  • 5
    • 33744961676 scopus 로고    scopus 로고
    • Applciations of machine learning in cancer prediction and prognosis
    • and
    • Cruz J.A., and Wishart D.S., 2006. Applciations of machine learning in cancer prediction and prognosis, Cancer Informatics, 2: 59–78.
    • (2006) Cancer Informatics , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 7
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • and
    • Diaz-Uriarte R., and Alvarex de Andrez S., 2006. Gene selection and classification of microarray data using random forest, BMC Bioinformatics, 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarex de Andrez, S.2
  • 8
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feaure selection from microarray gene expression data
    • Stanford Unviersity, Stanford CA
    • Ding C., and Peng H., 2003. Minimum redundancy feaure selection from microarray gene expression data. Proceedings of Computational Systems Bioinformatics. Stanford Unviersity, Stanford CA, 523–529.
    • (2003) Proceedings of Computational Systems Bioinformatics , pp. 523-529
    • Ding, C.1    Peng, H.2
  • 9
    • 0346061723 scopus 로고    scopus 로고
    • High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
    • Los Angeles CA, August 6 11, 2000
    • Donoho D.L., 2000. High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality. Math Challenges of the 21st Century. Los Angeles CA, August 6 11, 2000.
    • (2000) Math Challenges of the 21st Century
    • Donoho, D.L.1
  • 10
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression
    • and
    • Dudoit S., Fridlyand J., and Speed T., 2002. Comparison of discrimination methods for the classification of tumors using gene expression, J. Am. Stat. Assoc, 97: 77–87.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 11
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • and
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., and Mesirov J.P.. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286: 531–537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 12
    • 0004060921 scopus 로고    scopus 로고
    • Correlation based feature selection for machine learning. Doctoral dissertation
    • University of Waikato
    • Hall M.A., 1999. Correlation based feature selection for machine learning. Doctoral dissertation. Department of Computer Science. University of Waikato.
    • (1999) Department of Computer Science
    • Hall, M.A.1
  • 14
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • and
    • Inza I., Sierra B., Blanco R., and Larranaga P., 2002. Gene selection by sequential search wrapper approaches in microarray cancer class prediction, J. Intell. Fuzzy Syst., 12: 25–33.
    • (2002) J. Intell. Fuzzy Syst , vol.12 , pp. 25-33
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larranaga, P.4
  • 17
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • and
    • Li T., Zhang C., and Ogihara M., 2004. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics, 20: 2429–2437.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 18
    • 34250809535 scopus 로고    scopus 로고
    • Efficient generalized matrix approximations for biomarker discovery and visualization in gene expression data
    • Stanford University, Stanford, CA
    • Li W., Peng Y., Hang H.-C., and Liu Y., 2006. Efficient generalized matrix approximations for biomarker discovery and visualization in gene expression data., LSS Computational System Bioinformatics (CSB). Stanford University, Stanford, CA.
    • (2006) LSS Computational System Bioinformatics (CSB)
    • Li, W.1    Peng, Y.2    Hang, H.-C.3    Liu, Y.4
  • 19
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study of feature selection and classification methods using gene expression profiles and proteomic patterns
    • and
    • Liu H., Li J., and Wong L., 2002. A comparative study of feature selection and classification methods using gene expression profiles and proteomic patterns, Genome Informatics, 13: 51–60.
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 20
    • 5444225766 scopus 로고    scopus 로고
    • A Comparative Study on Feature Selection Methods for Drug Discovery
    • Liu Y., 2004. A Comparative Study on Feature Selection Methods for Drug Discovery, J. Chem. Inf. Comput. Sci., 44: 1823–1828.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 1823-1828
    • Liu, Y.1
  • 23
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RRelieffF
    • and
    • Robnik-Sikonja M., and Kononenko I., 2003. Theoretical and empirical analysis of ReliefF and RRelieffF, Machine Learning, 53: 23–69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 26
    • 0141974934 scopus 로고    scopus 로고
    • EXCAVATOR: A Computer Program for Efficiently Mining Gene Expression Data
    • and
    • Xu Y., Olman V., and Xu D., 2003. EXCAVATOR: A Computer Program for Efficiently Mining Gene Expression Data, Nucleic Acids Research, 31: 5582–5589.
    • (2003) Nucleic Acids Research , vol.31 , pp. 5582-5589
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 27
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • and
    • Yang Y., and Pedersen J.P., 1997. A comparative study on feature selection in text categorization. Proceeding of ICML
    • (1997) Proceeding of ICML
    • Yang, Y.1    Pedersen, J.P.2
  • 28
    • 12244293653 scopus 로고    scopus 로고
    • Redundancy based feature selection for microarray data
    • and, Seattle, WA
    • Yu L., and Liu H., 2004. Redundancy based feature selection for microarray data. KDD 2004. Seattle, WA, 737–742.
    • (2004) KDD 2004 , pp. 737-742
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.