메뉴 건너뛰기




Volumn 3907 LNCS, Issue , 2006, Pages 34-44

A hybrid GA/SVM approach for gene selection and classification of microarray data

Author keywords

Classification; Feature selection; Fuzzy logic; Genetic algorithms; Microarray data; Support vector machines

Indexed keywords

DATA PROCESSING; FUZZY CONTROL; GENETIC ALGORITHMS; GENETIC ENGINEERING; TUMORS; VECTORS;

EID: 33745768136     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11732242_4     Document Type: Conference Paper
Times cited : (141)

References (26)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. In Proc. Natnl. Acad. Sci. USA, volume 96, 1999.
    • (1999) Proc. Natnl. Acad. Sci. USA , vol.96
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 3
    • 33745794979 scopus 로고    scopus 로고
    • Feature space reduction of large scale gene expression data using Fuzzy Logic
    • LERIA, University of Angers, January
    • E. Bonilla Huerta, B. Duval, and J.K. Hao. Feature space reduction of large scale gene expression data using Fuzzy Logic. Technical Report, LERIA, University of Angers, January 2006.
    • (2006) Technical Report
    • Huerta, E.B.1    Duval, B.2    Hao, J.K.3
  • 5
    • 84856999267 scopus 로고    scopus 로고
    • Feature dimension reduction for microarray data analysis using locally linear embedding
    • S. Chao and C. Lihui Feature dimension reduction for microarray data analysis using locally linear embedding. In APBC, pages 211-217, 2005.
    • (2005) APBC , pp. 211-217
    • Chao, S.1    Lihui, C.2
  • 6
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 7
    • 10844250529 scopus 로고    scopus 로고
    • A novel feature selection method to improve classification of gene expression data
    • Australian Computer Society, Darlinghurst, Australia
    • L. Goh, Q. Song, and N. Kasabov. A novel feature selection method to improve classification of gene expression data. In Proceedings of the Second Asia-Pacific Conference on Bioinformatics, pages 161-166, Australian Computer Society, Darlinghurst, Australia, 2004.
    • (2004) Proceedings of the Second Asia-Pacific Conference on Bioinformatics , pp. 161-166
    • Goh, L.1    Song, Q.2    Kasabov, N.3
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • L. Li, C. R. Weinberg, T.A. Darden, and L.G. Pedersen. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17(12):1131-1142, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 15
    • 84901451540 scopus 로고    scopus 로고
    • Selecting informative genes using a multiobjective evolutionary algorithm
    • J. Liu and H. Iba. Selecting informative genes using a multiobjective evolutionary algorithm. In Proc. of Congress on Evolutionary Computation (CEC'02), pages 297-302, 2002.
    • (2002) Proc. of Congress on Evolutionary Computation (CEC'02) , pp. 297-302
    • Liu, J.1    Iba, H.2
  • 16
    • 0038062969 scopus 로고    scopus 로고
    • Support vector machines for protein fold class prediction
    • F. Markowetz, L. Edler, and M. Vingron. Support vector machines for protein fold class prediction. Diametrical Journal, 45(3):377-389, 2003.
    • (2003) Diametrical Journal , vol.45 , Issue.3 , pp. 377-389
    • Markowetz, F.1    Edler, L.2    Vingron, M.3
  • 18
    • 0344872506 scopus 로고    scopus 로고
    • Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
    • S. Peng, Q. Xu, X.B. Ling, X. Peng, W. Du, and L. Chen. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Letter, 555(2):358-362, 2003.
    • (2003) FEBS Letter , vol.555 , Issue.2 , pp. 358-362
    • Peng, S.1    Xu, Q.2    Ling, X.B.3    Peng, X.4    Du, W.5    Chen, L.6
  • 20
    • 9444293630 scopus 로고    scopus 로고
    • Classification of two-class cancer data reliably using evolutionary algorithms
    • KanGAL
    • A. R. Reddy and K. Deb. Classification of two-class cancer data reliably using evolutionary algorithms. Technical Report. KanGAL, 2003.
    • (2003) Technical Report
    • Reddy, A.R.1    Deb, K.2
  • 21
    • 2942541354 scopus 로고    scopus 로고
    • Feature selection for splice site prediction: A new method using eda-based feature ranking
    • Y. Saeys, S. Aeyels Degroeve, D. Rouze, and Y. P. Van de Peer. Feature selection for splice site prediction: A new method using eda-based feature ranking. BMC Bioinformatics, 5-64, 2004.
    • (2004) BMC Bioinformatics , pp. 5-64
    • Saeys, Y.1    Degroeve, S.A.2    Rouze, D.3    Van De Peer, Y.P.4
  • 25
    • 17444386734 scopus 로고    scopus 로고
    • Hykgene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • Y. Wang, F. Makedon, J.C. Ford, and J.D. Pearlman. Hykgene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics, 21(8):1530-1537, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.2    Ford, J.C.3    Pearlman, J.D.4
  • 26
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzlere, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2): 173-195, 2000.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzlere, E.1    Deb, K.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.