메뉴 건너뛰기




Volumn 6, Issue 2, 2008, Pages 61-73

Fuzzy Logic for Elimination of Redundant Information of Microarray Data

Author keywords

classification; dimension reduction; fuzzy processing; gene selection

Indexed keywords

ARTICLE; FUZZY LOGIC; FUZZY SYSTEM; GENE EXPRESSION; GENETIC SELECTION; LEUKEMIA; MICROARRAY ANALYSIS; NUCLEOTIDE SEQUENCE;

EID: 54349094943     PISSN: 16720229     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1672-0229(08)60021-2     Document Type: Article
Times cited : (28)

References (49)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 2
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor A., et al. Tissue classification with gene expression profiles. J. Comput. Biol. 7 (2000) 559-583
    • (2000) J. Comput. Biol. , vol.7 , pp. 559-583
    • Ben-Dor, A.1
  • 3
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 (2000) 503-511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1
  • 4
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 5
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M.B., et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863-14868
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 6
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong M., et al. Biomarker identification by feature wrappers. Genome Res. 11 (2001) 1878-1887
    • (2001) Genome Res. , vol.11 , pp. 1878-1887
    • Xiong, M.1
  • 7
    • 0037976550 scopus 로고    scopus 로고
    • Improved gene selection for classification of microarrays
    • Jaeger J., et al. Improved gene selection for classification of microarrays. Pac. Symp. Biocomput. (2003) 53-64
    • (2003) Pac. Symp. Biocomput. , pp. 53-64
    • Jaeger, J.1
  • 8
    • 12244293653 scopus 로고    scopus 로고
    • Yu, L. and Liu, H. 2004. Redundancy based feature selection for microarray data. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds. Kim, W., et al.), pp. 737-742. Seattle, USA.
    • Yu, L. and Liu, H. 2004. Redundancy based feature selection for microarray data. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds. Kim, W., et al.), pp. 737-742. Seattle, USA.
  • 9
    • 14944382963 scopus 로고    scopus 로고
    • Marohnic, V., et al. 2004. Mutual information based reduction of data mining dimensionality in gene expression analysis. In Proceedings of the 26th International Conference on Information Technology Interfaces, Vol. 1, pp. 249-254. Cavtat, Croatia.
    • Marohnic, V., et al. 2004. Mutual information based reduction of data mining dimensionality in gene expression analysis. In Proceedings of the 26th International Conference on Information Technology Interfaces, Vol. 1, pp. 249-254. Cavtat, Croatia.
  • 10
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., and Peng H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3 (2005) 185-205
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 11
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • Liu X., et al. An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6 (2005) 76
    • (2005) BMC Bioinformatics , vol.6 , pp. 76
    • Liu, X.1
  • 12
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., et al. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1226-1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1
  • 13
    • 40249120073 scopus 로고    scopus 로고
    • Hu, Y., et al. 2006. A novel microarray gene selection method based on consistency. In Proceedings of the Sixth International Conference on Hybrid Intelligent Systems. IEEE Computer Society.
    • Hu, Y., et al. 2006. A novel microarray gene selection method based on consistency. In Proceedings of the Sixth International Conference on Hybrid Intelligent Systems. IEEE Computer Society.
  • 14
    • 38349065447 scopus 로고    scopus 로고
    • Correlation-based relevancy and redundancy measures for efficient gene selection
    • Mao K., and Tang W. Correlation-based relevancy and redundancy measures for efficient gene selection. Lect. Notes Comput. Sci. 4774 (2007) 230-241
    • (2007) Lect. Notes Comput. Sci. , vol.4774 , pp. 230-241
    • Mao, K.1    Tang, W.2
  • 15
    • 33750047889 scopus 로고    scopus 로고
    • A new maximum-relevance criterion for significant gene selection
    • Kim Y.B., et al. A new maximum-relevance criterion for significant gene selection. Lect. Notes Comput. Sci. 4146 (2006) 71-80
    • (2006) Lect. Notes Comput. Sci. , vol.4146 , pp. 71-80
    • Kim, Y.B.1
  • 16
    • 34547126221 scopus 로고    scopus 로고
    • Optimal search-based gene subset selection for gene array cancer classification
    • Li J., et al. Optimal search-based gene subset selection for gene array cancer classification. IEEE Trans. Inf. Technol. Biomed. 11 (2007) 398-405
    • (2007) IEEE Trans. Inf. Technol. Biomed. , vol.11 , pp. 398-405
    • Li, J.1
  • 17
    • 38349044389 scopus 로고    scopus 로고
    • SVM-RFE with relevancy and redundancy criteria for gene selection
    • Mundra P.A., and Rajapakse J.C. SVM-RFE with relevancy and redundancy criteria for gene selection. Lect. Notes Comput. Sci. 4774 (2007) 242-252
    • (2007) Lect. Notes Comput. Sci. , vol.4774 , pp. 242-252
    • Mundra, P.A.1    Rajapakse, J.C.2
  • 18
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • Mamitsuka H. Selecting features in microarray classification using ROC curves. Pattern Recognit. 39 (2006) 2393-2404
    • (2006) Pattern Recognit. , vol.39 , pp. 2393-2404
    • Mamitsuka, H.1
  • 19
    • 54349098788 scopus 로고    scopus 로고
    • John, G., et al. 1994. Irrelevant features and the subset selection problem. In Proceedings of the 11th International Conference on Machine Learning, pp. 121-129. Morgan Kaufmann.
    • John, G., et al. 1994. Irrelevant features and the subset selection problem. In Proceedings of the 11th International Conference on Machine Learning, pp. 121-129. Morgan Kaufmann.
  • 20
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5 (2004) 1205-1224
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 21
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., et al. A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1
  • 22
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., et al. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97 (2002) 77-87
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1
  • 23
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V., and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 24
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C., and McLachlan G.J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. USA 99 (2002) 6562-6566
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 25
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O., et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17 (2001) 520-525
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1
  • 26
    • 54349126700 scopus 로고    scopus 로고
    • Bicciato, S., et al. 2001. Analysis of an associative memory neural network for pattern identification in gene expression data. In Proceedings of the ACM SIGKDD Workshop on Data Mining in Bioinformatics, pp. 22-30. San Francisco, USA.
    • Bicciato, S., et al. 2001. Analysis of an associative memory neural network for pattern identification in gene expression data. In Proceedings of the ACM SIGKDD Workshop on Data Mining in Bioinformatics, pp. 22-30. San Francisco, USA.
  • 27
    • 54349090662 scopus 로고    scopus 로고
    • Cho, S.B. and Won, H.H. 2003. Machine learning in DNA microarray analysis for cancer classification. In Proceedings of the First Asia-Pacific Bioinformatics Conference, pp. 189-198. Adelaide, Australia.
    • Cho, S.B. and Won, H.H. 2003. Machine learning in DNA microarray analysis for cancer classification. In Proceedings of the First Asia-Pacific Bioinformatics Conference, pp. 189-198. Adelaide, Australia.
  • 28
    • 34247154511 scopus 로고    scopus 로고
    • Cancer classification using ensemble of neural networks with multiple significant gene subsets
    • Cho S.B., and Won H.H. Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl. Intell. 26 (2007) 243-250
    • (2007) Appl. Intell. , vol.26 , pp. 243-250
    • Cho, S.B.1    Won, H.H.2
  • 29
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with Gaussian processes
    • Chu W., et al. Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21 (2005) 3385-3393
    • (2005) Bioinformatics , vol.21 , pp. 3385-3393
    • Chu, W.1
  • 30
    • 23944504100 scopus 로고    scopus 로고
    • FCM-SVM-RFE gene feature selection algorithm for leukemia classification from mi-croarray gene expression data
    • Reno, USA
    • Tang Y., et al. FCM-SVM-RFE gene feature selection algorithm for leukemia classification from mi-croarray gene expression data. Proceedings of the 14th IEEE International Conference on Fuzzy Systems (2005), Reno, USA 97-101
    • (2005) Proceedings of the 14th IEEE International Conference on Fuzzy Systems , pp. 97-101
    • Tang, Y.1
  • 31
    • 34250773981 scopus 로고    scopus 로고
    • Wang, Z., et al. 2006. Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis. In Proceedings of the Second International Symposium on Evolving Fuzzy Systems, pp. 241-246. Lake District, UK.
    • Wang, Z., et al. 2006. Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis. In Proceedings of the Second International Symposium on Evolving Fuzzy Systems, pp. 241-246. Lake District, UK.
  • 32
    • 27744552855 scopus 로고    scopus 로고
    • Gene selection using logistic regressions based on Aic, Bic and MDL criteria
    • Zhou X., et al. Gene selection using logistic regressions based on Aic, Bic and MDL criteria. New Math. Nat. Comput. 1 (2005) 129-145
    • (2005) New Math. Nat. Comput. , vol.1 , pp. 129-145
    • Zhou, X.1
  • 33
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • Tang Y., et al. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4 (2007) 365-381
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , pp. 365-381
    • Tang, Y.1
  • 34
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., et al. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 35
    • 0035222126 scopus 로고    scopus 로고
    • A nonparametric scoring algorithm for identifying informative genes from microarray data
    • Park P.J., et al. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac. Symp. Biocomput. (2001) 52-63
    • (2001) Pac. Symp. Biocomput. , pp. 52-63
    • Park, P.J.1
  • 36
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 37
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., et al. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17 (2001) 1131-1142
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1
  • 38
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis?
    • Kluwer Academic, Boston, USA
    • Li W., and Yang Y. How many genes are needed for a discriminant microarray data analysis?. Methods of Microarray Data Analysis (2002), Kluwer Academic, Boston, USA 137-150
    • (2002) Methods of Microarray Data Analysis , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 39
    • 24644477601 scopus 로고    scopus 로고
    • Bayesian learning with local support vector machines for cancer classification with gene expression data
    • Marchiori E., and Sebag M. Bayesian learning with local support vector machines for cancer classification with gene expression data. Lect. Notes Comput. Sci. 3449 (2005) 74-83
    • (2005) Lect. Notes Comput. Sci. , vol.3449 , pp. 74-83
    • Marchiori, E.1    Sebag, M.2
  • 40
    • 33947234670 scopus 로고    scopus 로고
    • Yang, W.H., et al. 2006. Generalized discriminant analysis for tumor classification with gene expression data. In Proceedings of the International Conference on Machine Learning and Cybernetics: 4322-4327.
    • Yang, W.H., et al. 2006. Generalized discriminant analysis for tumor classification with gene expression data. In Proceedings of the International Conference on Machine Learning and Cybernetics: 4322-4327.
  • 41
    • 85072725799 scopus 로고    scopus 로고
    • A hybrid approach for biomarker discovery from microarray gene expression data for cancer classification
    • Peng Y., et al. A hybrid approach for biomarker discovery from microarray gene expression data for cancer classification. Cancer Informatics 2 (2006) 301-311
    • (2006) Cancer Informatics , vol.2 , pp. 301-311
    • Peng, Y.1
  • 42
    • 47649097303 scopus 로고    scopus 로고
    • Li, G.Z., et al. 2007. Partial least squares based dimension reduction with gene selection for tumor classification. In Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, pp. 1439-1444. Boston, USA.
    • Li, G.Z., et al. 2007. Partial least squares based dimension reduction with gene selection for tumor classification. In Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, pp. 1439-1444. Boston, USA.
  • 43
    • 38049153795 scopus 로고    scopus 로고
    • An effective gene selection method based on relevance analysis and discernibility matrix
    • Zhang L., et al. An effective gene selection method based on relevance analysis and discernibility matrix. Lect. Notes Comput. Sci. 4426 (2007) 1088-1095
    • (2007) Lect. Notes Comput. Sci. , vol.4426 , pp. 1088-1095
    • Zhang, L.1
  • 44
    • 0034656561 scopus 로고    scopus 로고
    • Normalization strategies for cDNA microarrays
    • Schuchhardt J., et al. Normalization strategies for cDNA microarrays. Nucleic Acids Res. 28 (2000) E47
    • (2000) Nucleic Acids Res. , vol.28
    • Schuchhardt, J.1
  • 46
    • 54349108188 scopus 로고    scopus 로고
    • Interrelated clustering: an approach for gene expression data analysis
    • Wang J.T.L., et al. (Ed), World Scientific, Singapore
    • Tang C., et al. Interrelated clustering: an approach for gene expression data analysis. In: Wang J.T.L., et al. (Ed). Computational Biology and Genome Informatics (2003), World Scientific, Singapore 183-206
    • (2003) Computational Biology and Genome Informatics , pp. 183-206
    • Tang, C.1
  • 47
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656.
    • Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948) 379-423 623-656.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 48
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: detecting and evaluating dependencies between variables
    • Steuer R., et al. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18 (2002) S231-S240
    • (2002) Bioinformatics , vol.18
    • Steuer, R.1
  • 49
    • 0036125788 scopus 로고    scopus 로고
    • Estimating the mutual information of an EEG-based Brain-Computer Interface
    • Schlögl A., et al. Estimating the mutual information of an EEG-based Brain-Computer Interface. Biomed. Tech. 47 (2002) 3-8
    • (2002) Biomed. Tech. , vol.47 , pp. 3-8
    • Schlögl, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.