메뉴 건너뛰기




Volumn 9, Issue 8, 2010, Pages 861-870

Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents

Author keywords

Base excision repair; Caenorhabditis elegans; DNA damage response; Uracil DNA glycosylase

Indexed keywords

URACIL DNA GLYCOSIDASE;

EID: 77955277982     PISSN: 15687864     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dnarep.2010.04.009     Document Type: Article
Times cited : (16)

References (48)
  • 1
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 2
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA-occurrence, consequences and repair
    • Krokan H.E., Drablos F., Slupphaug G. Uracil in DNA-occurrence, consequences and repair. Oncogene 2002, 21:8935-8948.
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drablos, F.2    Slupphaug, G.3
  • 3
    • 0034576553 scopus 로고    scopus 로고
    • The alpha/beta fold uracil-DNA glycosylases: a common origin with diverse fates
    • Aravind L., Koonin E. The alpha/beta fold uracil-DNA glycosylases: a common origin with diverse fates. Genome Biol. 2000, 1:1-8.
    • (2000) Genome Biol. , vol.1 , pp. 1-8
    • Aravind, L.1    Koonin, E.2
  • 4
    • 0029904839 scopus 로고    scopus 로고
    • A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA
    • Slupphaug G., Mol C.D., Kavli B., Arvai A.S., Krokan H.E., Tainer J.A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996, 384:87-92.
    • (1996) Nature , vol.384 , pp. 87-92
    • Slupphaug, G.1    Mol, C.D.2    Kavli, B.3    Arvai, A.S.4    Krokan, H.E.5    Tainer, J.A.6
  • 5
    • 18644363009 scopus 로고    scopus 로고
    • HUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches and U in single stranded DNA, with hSMUG1 as a broad specificity backup
    • Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., Aas P.A., Hagen L., Krokan H.E., Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches and U in single stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 2002, 277:39926-39936.
    • (2002) J. Biol. Chem. , vol.277 , pp. 39926-39936
    • Kavli, B.1    Sundheim, O.2    Akbari, M.3    Otterlei, M.4    Nilsen, H.5    Skorpen, F.6    Aas, P.A.7    Hagen, L.8    Krokan, H.E.9    Slupphaug, G.10
  • 6
    • 36549061567 scopus 로고    scopus 로고
    • 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems
    • Fischer F., Baerenfaller K., Jiricny J. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology 2007, 133:1858-1868.
    • (2007) Gastroenterology , vol.133 , pp. 1858-1868
    • Fischer, F.1    Baerenfaller, K.2    Jiricny, J.3
  • 7
    • 0029960063 scopus 로고    scopus 로고
    • Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage
    • Dizdaroglu M., Karakaya A., Jaruga P., Slupphaug G., Krokan H.E. Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage. Nucleic Acids Res. 1996, 24:418-422.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 418-422
    • Dizdaroglu, M.1    Karakaya, A.2    Jaruga, P.3    Slupphaug, G.4    Krokan, H.E.5
  • 8
    • 0037101779 scopus 로고    scopus 로고
    • Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease
    • Shatilla A., Ramotar D. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Biochem. J. 2002, 365:547-553.
    • (2002) Biochem. J. , vol.365 , pp. 547-553
    • Shatilla, A.1    Ramotar, D.2
  • 9
    • 0016786963 scopus 로고
    • Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor
    • Price A.R., Frato J. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor. J. Biol. Chem. 1975, 250:8804-8811.
    • (1975) J. Biol. Chem. , vol.250 , pp. 8804-8811
    • Price, A.R.1    Frato, J.2
  • 10
    • 0026574664 scopus 로고
    • Characterization of the Escherichia coli uracil-DNA glycosylase·inhibitor protein complex
    • Bennett S.E., Mosbaugh D.W. Characterization of the Escherichia coli uracil-DNA glycosylase·inhibitor protein complex. J. Biol. Chem. 1992, 267:22512-22521.
    • (1992) J. Biol. Chem. , vol.267 , pp. 22512-22521
    • Bennett, S.E.1    Mosbaugh, D.W.2
  • 11
    • 0025790276 scopus 로고
    • The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair
    • Impellizzeri K.J., Anderson B., Burgers P.M. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J. Bacteriol. 1991, 173:6807-6810.
    • (1991) J. Bacteriol. , vol.173 , pp. 6807-6810
    • Impellizzeri, K.J.1    Anderson, B.2    Burgers, P.M.3
  • 12
    • 0020461949 scopus 로고
    • Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli
    • Duncan B.K., Weiss B. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 1982, 151:750-755.
    • (1982) J. Bacteriol. , vol.151 , pp. 750-755
    • Duncan, B.K.1    Weiss, B.2
  • 13
    • 21844464297 scopus 로고    scopus 로고
    • C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases
    • An Q., Robins P., Lindahl T., Barnes D.E. C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J. 2005, 24(12):2205-2213.
    • (2005) EMBO J. , vol.24 , Issue.12 , pp. 2205-2213
    • An, Q.1    Robins, P.2    Lindahl, T.3    Barnes, D.E.4
  • 16
    • 33749245331 scopus 로고    scopus 로고
    • Abrogation of the CLK-2 checkpoint leads to tolerance to base-excision repair intermediates
    • Dengg M., Garcia-Muse T., Gill S.G., Ashcroft N., Boulton S.J., Nilsen H. Abrogation of the CLK-2 checkpoint leads to tolerance to base-excision repair intermediates. EMBO Rep. 2006, 7:1046-1051.
    • (2006) EMBO Rep. , vol.7 , pp. 1046-1051
    • Dengg, M.1    Garcia-Muse, T.2    Gill, S.G.3    Ashcroft, N.4    Boulton, S.J.5    Nilsen, H.6
  • 17
    • 0021398955 scopus 로고
    • Mutational specificity of depurination
    • Kunkel T.A. Mutational specificity of depurination. Proc. Natl. Acad. Sci. U.S.A. 1984, 81:1494-1498.
    • (1984) Proc. Natl. Acad. Sci. U.S.A. , vol.81 , pp. 1494-1498
    • Kunkel, T.A.1
  • 18
    • 0023613953 scopus 로고
    • Rapid and efficient site-specific mutagenesis without phenotypic selection
    • Kunkel T.A., Roberts J.D., Zakour R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987, 154:367-382.
    • (1987) Methods Enzymol. , vol.154 , pp. 367-382
    • Kunkel, T.A.1    Roberts, J.D.2    Zakour, R.A.3
  • 19
    • 0032698070 scopus 로고    scopus 로고
    • The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA
    • Lutsenko E., Bhagwat A.S. The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA. J. Biol. Chem. 1999, 274:31034-31038.
    • (1999) J. Biol. Chem. , vol.274 , pp. 31034-31038
    • Lutsenko, E.1    Bhagwat, A.S.2
  • 20
    • 0021723791 scopus 로고
    • Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II
    • Clarke N.D., Kvaal M., Seeberg E. Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol. Gen. Genet. 1984, 197:368-372.
    • (1984) Mol. Gen. Genet. , vol.197 , pp. 368-372
    • Clarke, N.D.1    Kvaal, M.2    Seeberg, E.3
  • 21
    • 0016063911 scopus 로고
    • The genetics of Caenorhabditis elegans
    • Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974, 77:71-94.
    • (1974) Genetics , vol.77 , pp. 71-94
    • Brenner, S.1
  • 24
    • 24044440971 scopus 로고    scopus 로고
    • BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
    • Maere S., Heymans K., Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21:3448-3449.
    • (2005) Bioinformatics , vol.21 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3
  • 25
    • 50849101055 scopus 로고    scopus 로고
    • Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans
    • Nakamura N., Morinaga H., Kikuchi M., Yonekura S., Ishii N., Yamamoto K., Yonei S., Zhang Q.M. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis 2008, 23:407-413.
    • (2008) Mutagenesis , vol.23 , pp. 407-413
    • Nakamura, N.1    Morinaga, H.2    Kikuchi, M.3    Yonekura, S.4    Ishii, N.5    Yamamoto, K.6    Yonei, S.7    Zhang, Q.M.8
  • 26
    • 0017392934 scopus 로고
    • DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli
    • Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 1977, 252:3286-3294.
    • (1977) J. Biol. Chem. , vol.252 , pp. 3286-3294
    • Lindahl, T.1    Ljungquist, S.2    Siegert, W.3    Nyberg, B.4    Sperens, B.5
  • 27
    • 0028933306 scopus 로고
    • Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase
    • Slupphaug G., Eftedal I., Kavli B., Bharati S., Helle N.M., Haug T., Levine D.W., Krokan H.E. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 1995, 34:128-138.
    • (1995) Biochemistry , vol.34 , pp. 128-138
    • Slupphaug, G.1    Eftedal, I.2    Kavli, B.3    Bharati, S.4    Helle, N.M.5    Haug, T.6    Levine, D.W.7    Krokan, H.E.8
  • 28
    • 0035421186 scopus 로고    scopus 로고
    • Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase
    • Nilsen H., Haushalter K.A., Robins P., Barnes D.E., Verdine G.L., Lindahl T. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 2001, 20:4278-4286.
    • (2001) EMBO J. , vol.20 , pp. 4278-4286
    • Nilsen, H.1    Haushalter, K.A.2    Robins, P.3    Barnes, D.E.4    Verdine, G.L.5    Lindahl, T.6
  • 29
    • 0034930217 scopus 로고    scopus 로고
    • Base excision repair in a network of defence and tolerance
    • Nilsen H., Krokan H.E. Base excision repair in a network of defence and tolerance. Carcinogenesis 2001, 22:987-998.
    • (2001) Carcinogenesis , vol.22 , pp. 987-998
    • Nilsen, H.1    Krokan, H.E.2
  • 31
    • 0035975986 scopus 로고    scopus 로고
    • The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis
    • Schumacher B., Hofmann K., Boulton S., Gartner A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 2001, 11:1722-1727.
    • (2001) Curr. Biol. , vol.11 , pp. 1722-1727
    • Schumacher, B.1    Hofmann, K.2    Boulton, S.3    Gartner, A.4
  • 33
    • 0034636776 scopus 로고    scopus 로고
    • Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks
    • Sutherland B.M., Bennett P.V., Sidorkina O., Laval J. Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry 2000, 39:8026-8031.
    • (2000) Biochemistry , vol.39 , pp. 8026-8031
    • Sutherland, B.M.1    Bennett, P.V.2    Sidorkina, O.3    Laval, J.4
  • 34
    • 38349105900 scopus 로고    scopus 로고
    • Complex I is the major site of mitochondrial superoxide production by paraquat
    • Cocheme H.M., Murphy M.P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 2008, 283:1786-1798.
    • (2008) J. Biol. Chem. , vol.283 , pp. 1786-1798
    • Cocheme, H.M.1    Murphy, M.P.2
  • 35
    • 33751005017 scopus 로고    scopus 로고
    • Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans
    • Salinas L.S., Maldonado E., Navarro R.E. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ. 2006, 13:2129-2139.
    • (2006) Cell Death Differ. , vol.13 , pp. 2129-2139
    • Salinas, L.S.1    Maldonado, E.2    Navarro, R.E.3
  • 36
  • 37
    • 48549085585 scopus 로고    scopus 로고
    • Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family
    • Greiss S., Schumacher B., Grandien K., Rothblatt J., Gartner A. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 2008, 9:334.
    • (2008) BMC Genomics , vol.9 , pp. 334
    • Greiss, S.1    Schumacher, B.2    Grandien, K.3    Rothblatt, J.4    Gartner, A.5
  • 39
    • 0042631524 scopus 로고    scopus 로고
    • Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16
    • McElwee J., Bubb K., Thomas J.H. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2003, 2:111-121.
    • (2003) Aging Cell , vol.2 , pp. 111-121
    • McElwee, J.1    Bubb, K.2    Thomas, J.H.3
  • 41
    • 33744503150 scopus 로고    scopus 로고
    • Using Caenorhabditis elegans as a model for aging and age-related diseases
    • Olsen A., Vantipalli M.C., Lithgow G.J. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann. NY Acad. Sci. 2006, 1067:120-128.
    • (2006) Ann. NY Acad. Sci. , vol.1067 , pp. 120-128
    • Olsen, A.1    Vantipalli, M.C.2    Lithgow, G.J.3
  • 42
    • 15444371989 scopus 로고    scopus 로고
    • JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16
    • Oh S.W., Mukhopadhyay A., Svrzikapa N., Jiang F., Davis R.J., Tissenbaum H.A. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:4494-4499.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 4494-4499
    • Oh, S.W.1    Mukhopadhyay, A.2    Svrzikapa, N.3    Jiang, F.4    Davis, R.J.5    Tissenbaum, H.A.6
  • 43
    • 0032167424 scopus 로고    scopus 로고
    • Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
    • Parikh S.S., Mol C.D., Slupphaug G., Bharati S., Krokan H.E., Tainer J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 1998, 17:5214-5226.
    • (1998) EMBO J. , vol.17 , pp. 5214-5226
    • Parikh, S.S.1    Mol, C.D.2    Slupphaug, G.3    Bharati, S.4    Krokan, H.E.5    Tainer, J.A.6
  • 44
    • 20644438238 scopus 로고    scopus 로고
    • Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase
    • Chen C.Y., Mosbaugh D.W., Bennett S.E. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase. DNA Repair. (Amst.) 2005, 4:793-805.
    • (2005) DNA Repair. (Amst.) , vol.4 , pp. 793-805
    • Chen, C.Y.1    Mosbaugh, D.W.2    Bennett, S.E.3
  • 45
    • 33748894494 scopus 로고    scopus 로고
    • The relative roles of three DNA repair pathways in preventing Caenorhabditis elegans mutation accumulation
    • Denver D.R., Feinberg S., Steding C., Durbin M., Lynch M. The relative roles of three DNA repair pathways in preventing Caenorhabditis elegans mutation accumulation. Genetics 2006, 174:57-65.
    • (2006) Genetics , vol.174 , pp. 57-65
    • Denver, D.R.1    Feinberg, S.2    Steding, C.3    Durbin, M.4    Lynch, M.5
  • 46
    • 34249004315 scopus 로고    scopus 로고
    • The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans
    • Stergiou L., Doukoumetzidis K., Sendoel A., Hengartner M.O. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ. 2007, 14:1129-1138.
    • (2007) Cell Death Differ. , vol.14 , pp. 1129-1138
    • Stergiou, L.1    Doukoumetzidis, K.2    Sendoel, A.3    Hengartner, M.O.4
  • 48
    • 0033529717 scopus 로고    scopus 로고
    • The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene
    • Conradt B., Horvitz H.R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 1999, 98:317-327.
    • (1999) Cell , vol.98 , pp. 317-327
    • Conradt, B.1    Horvitz, H.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.