-
1
-
-
0027278557
-
Instability and decay of the primary structure of DNA
-
Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993; 362:709-715.
-
(1993)
Nature
, vol.362
, pp. 709-715
-
-
Lindahl, T.1
-
2
-
-
0034733899
-
Base excision repair of DNA in mammalian cells
-
Krokan HE et al. Base excision repair of DNA in mammalian cells. FEBS Lett. 2000; 476:73-77.
-
(2000)
FEBS Lett
, vol.476
, pp. 73-77
-
-
Krokan, H.E.1
-
3
-
-
68849088750
-
The contribution of DNA base damage to human cancer is modulated by the base excision repair interaction network
-
Arczewska KD et al. The contribution of DNA base damage to human cancer is modulated by the base excision repair interaction network. Crit Rev Oncog. 2008; 14:217-273.
-
(2008)
Crit Rev Oncog
, vol.14
, pp. 217-273
-
-
Arczewska, K.D.1
-
4
-
-
10944251591
-
Repair and genetic consequences of endogenous DNA base damage in mammalian cells
-
Barnes DE and Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004; 38:445-476.
-
(2004)
Annu Rev Genet
, vol.38
, pp. 445-476
-
-
Barnes, D.E.1
Lindahl, T.2
-
5
-
-
0037101779
-
Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease
-
Shatilla A and Ramotar D. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Biochem J. 2002; 365:547-553.
-
(2002)
Biochem J
, vol.365
, pp. 547-553
-
-
Shatilla, A.1
Ramotar, D.2
-
6
-
-
50849101055
-
Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans
-
Nakamura N et al. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis. 2008; 23:407-413.
-
(2008)
Mutagenesis
, vol.23
, pp. 407-413
-
-
Nakamura, N.1
-
7
-
-
67349253020
-
Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region
-
Morinaga H et al. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region. DNA Repair (Amst). 2009; 8:844-851.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 844-851
-
-
Morinaga, H.1
-
8
-
-
33744503150
-
Using Caenorhabditis elegans as a model for aging and age-related diseases
-
Olsen A, Vantipalli MC, and Lithgow GJ. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann N Y Acad Sci. 2006; 1067:120-128.
-
(2006)
Ann N Y Acad Sci
, vol.1067
, pp. 120-128
-
-
Olsen, A.1
Vantipalli, M.C.2
Lithgow, G.J.3
-
9
-
-
33748894494
-
The relative roles of three DNA repair pathways in preventing Caenorhabditis elegans mutation accumulation
-
Denver DR et al. The relative roles of three DNA repair pathways in preventing Caenorhabditis elegans mutation accumulation. Genetics. 2006; 174:57-65.
-
(2006)
Genetics
, vol.174
, pp. 57-65
-
-
Denver, D.R.1
-
10
-
-
0030745912
-
In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients
-
Reardon JT et al. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A. 1997; 94:9463-9468.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 9463-9468
-
-
Reardon, J.T.1
-
11
-
-
0032913570
-
Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae
-
Swanson R et al. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999; 19:2929-2935.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 2929-2935
-
-
Swanson, R.1
-
12
-
-
0037096191
-
Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms
-
Boiteux S, Gellon L, and Guibourt N. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms. Free Radical Biology and Medicine. 2002; 32:1244-1253.
-
(2002)
Free Radical Biology and Medicine
, vol.32
, pp. 1244-1253
-
-
Boiteux, S.1
Gellon, L.2
Guibourt, N.3
-
13
-
-
34548853161
-
Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans
-
Meyer JN et al. Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol. 2007; 8:R70.
-
(2007)
Genome Biol
, vol.8
-
-
Meyer, J.N.1
-
14
-
-
0028948394
-
Mammalian DNA nucleotide excision repair reconstituted with purified protein components
-
Aboussekhra A et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995; 80:859-868.
-
(1995)
Cell
, vol.80
, pp. 859-868
-
-
Aboussekhra, A.1
-
15
-
-
0020196749
-
Radiation-sensitive mutants of Caenorhabditis elegans
-
Hartman PS and Herman RK. Radiation-sensitive mutants of Caenorhabditis elegans. Genetics. 1982; 102:159-178.
-
(1982)
Genetics
, vol.102
, pp. 159-178
-
-
Hartman, P.S.1
Herman, R.K.2
-
16
-
-
0024676687
-
Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans
-
Hartman PS et al. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans. Genetics. 1989; 122:379-385.
-
(1989)
Genetics
, vol.122
, pp. 379-385
-
-
Hartman, P.S.1
-
17
-
-
40249084262
-
Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans
-
Hyun M et al. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. Nucleic Acids Res. 2008; 36:1380-1389.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 1380-1389
-
-
Hyun, M.1
-
18
-
-
13944262937
-
Understanding the odd science of aging
-
Kirkwood TB. Understanding the odd science of aging. Cell. 2005; 120:437-447.
-
(2005)
Cell
, vol.120
, pp. 437-447
-
-
Kirkwood, T.B.1
-
19
-
-
55549116359
-
DNA damage and ageing: new-age ideas for an age-old problem
-
Garinis GA et al. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008; 10:1241-1247.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 1241-1247
-
-
Garinis, G.A.1
-
20
-
-
77049308856
-
Aging: a theory based on free radical and radiation chemistry
-
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956; 11:298-300.
-
(1956)
J Gerontol
, vol.11
, pp. 298-300
-
-
Harman, D.1
-
21
-
-
33846030099
-
Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome
-
van der Pluijm I et al. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 2007; 5: e2.
-
(2007)
PLoS Biol
, vol.5
-
-
van der Pluijm, I.1
-
22
-
-
2542425405
-
Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells
-
Evert BA et al. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J Biol Chem. 2004; 279:22585-22594.
-
(2004)
J Biol Chem
, vol.279
, pp. 22585-22594
-
-
Evert, B.A.1
-
23
-
-
3142707088
-
Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae
-
Salmon TB et al. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 2004; 32:3712-3723.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 3712-3723
-
-
Salmon, T.B.1
-
24
-
-
48549085585
-
Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family
-
Greiss S et al. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics. 2008; 9:334.
-
(2008)
BMC Genomics
, vol.9
, pp. 334
-
-
Greiss, S.1
-
25
-
-
34848911606
-
Genetics of aging in Caenorhabditis elegans
-
Antebi A. Genetics of aging in Caenorhabditis elegans. PLoS Genet. 2007; 3:1565-1571.
-
(2007)
PLoS Genet
, vol.3
, pp. 1565-1571
-
-
Antebi, A.1
-
26
-
-
0042092531
-
Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans
-
Murphy CT et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003; 424:277-283.
-
(2003)
Nature
, vol.424
, pp. 277-283
-
-
Murphy, C.T.1
-
27
-
-
0042631524
-
Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16
-
McElwee J, Bubb K, and Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003; 2:111-121.
-
(2003)
Aging Cell
, vol.2
, pp. 111-121
-
-
McElwee, J.1
Bubb, K.2
Thomas, J.H.3
-
28
-
-
0035990351
-
Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease
-
Johnson TE et al. Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis. 2002; 25:197-206.
-
(2002)
J Inherit Metab Dis
, vol.25
, pp. 197-206
-
-
Johnson, T.E.1
-
29
-
-
38449093926
-
The MAP kinase JNK-1 of Caenorhabditis elegans: location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness
-
Wolf M et al. The MAP kinase JNK-1 of Caenorhabditis elegans: location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness. J Cell Physiol. 2008; 214:721-729.
-
(2008)
J Cell Physiol
, vol.214
, pp. 721-729
-
-
Wolf, M.1
-
30
-
-
0036233808
-
Oxidative stress and life span determination in the nematode Caenorhabditis elegans
-
Honda Y and Honda S. Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci. 2002; 959:466-474.
-
(2002)
Ann N Y Acad Sci
, vol.959
, pp. 466-474
-
-
Honda, Y.1
Honda, S.2
-
31
-
-
37649022616
-
Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans
-
Murphy CT, Lee SJ, and Kenyon C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2007; 104: 19046-19050.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19046-19050
-
-
Murphy, C.T.1
Lee, S.J.2
Kenyon, C.3
-
32
-
-
38149092669
-
Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans
-
Kahn NW et al. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J. 2008; 409:205-213.
-
(2008)
Biochem J
, vol.409
, pp. 205-213
-
-
Kahn, N.W.1
-
33
-
-
52049093450
-
The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging
-
Sheaffer KL, Updike DL, and Mango SE. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol. 2008; 18:1355-1364.
-
(2008)
Curr Biol
, vol.18
, pp. 1355-1364
-
-
Sheaffer, K.L.1
Updike, D.L.2
Mango, S.E.3
-
34
-
-
33751005017
-
Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans
-
Salinas LS, Maldonado E, and Navarro RE. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ. 2006; 13:2129-2139.
-
(2006)
Cell Death Differ
, vol.13
, pp. 2129-2139
-
-
Salinas, L.S.1
Maldonado, E.2
Navarro, R.E.3
-
35
-
-
18844424923
-
The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei
-
Kondo M et al. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev. 2005; 126:642-647.
-
(2005)
Mech Ageing Dev
, vol.126
, pp. 642-647
-
-
Kondo, M.1
-
36
-
-
70350365110
-
Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression
-
Lee SJ, Murphy CT, and Kenyon C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 2009; 10: 379-391.
-
(2009)
Cell Metab
, vol.10
, pp. 379-391
-
-
Lee, S.J.1
Murphy, C.T.2
Kenyon, C.3
-
37
-
-
0037443054
-
Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi
-
Pothof J et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 2003; 17:443-448.
-
(2003)
Genes Dev
, vol.17
, pp. 443-448
-
-
Pothof, J.1
-
38
-
-
4444279075
-
Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality
-
van Haaften G et al. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality. Proc Natl Acad Sci U S A. 2004; 101:12992-12996.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 12992-12996
-
-
van Haaften, G.1
-
39
-
-
40949133430
-
Plx1 is required for chromosomal DNA replication under stressful conditions
-
Trenz K, Errico A, and Costanzo V. Plx1 is required for chromosomal DNA replication under stressful conditions. Embo J. 2008; 27:876-885.
-
(2008)
Embo J
, vol.27
, pp. 876-885
-
-
Trenz, K.1
Errico, A.2
Costanzo, V.3
-
40
-
-
56949105254
-
Polo-like kinase 1 reaches beyond mitosis--cytokinesis, DNA damage response, and development
-
Takaki T et al. Polo-like kinase 1 reaches beyond mitosis--cytokinesis, DNA damage response, and development. Curr Opin Cell Biol. 2008; 20:650-660.
-
(2008)
Curr Opin Cell Biol
, vol.20
, pp. 650-660
-
-
Takaki, T.1
-
41
-
-
0036007115
-
Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity
-
Mishima M, Kaitna S., and Glotzer M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell. 2002; 2:41-54.
-
(2002)
Dev Cell
, vol.2
, pp. 41-54
-
-
Mishima, M.1
Kaitna, S.2
Glotzer, M.3
-
42
-
-
33747432986
-
Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
-
Woodward AM et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006; 173:673-683.
-
(2006)
J Cell Biol
, vol.173
, pp. 673-683
-
-
Woodward, A.M.1
-
43
-
-
37549066986
-
Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues
-
Astin JW, O'Neil NJ, and Kuwabara PE. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst) 2008; 7:267-280.
-
(2008)
RAD-3 and WWP-1. DNA Repair (Amst)
, vol.7
, pp. 267-280
-
-
Astin, J.W.1
O'Neil, N.J.2
Kuwabara, P.E.3
-
44
-
-
13944269223
-
The plasticity of aging: insights from long-lived mutants
-
Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005; 120:449-460.
-
(2005)
Cell
, vol.120
, pp. 449-460
-
-
Kenyon, C.1
-
45
-
-
43449137572
-
Transcriptional networks in S. cerevisiae linked to an accumulation of base excision repair intermediates
-
Rusyn I et al. Transcriptional networks in S. cerevisiae linked to an accumulation of base excision repair intermediates. PLoS ONE 2007; 2:e1252.
-
(2007)
PLoS ONE
, vol.2
-
-
Rusyn, I.1
-
46
-
-
53049083570
-
DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae
-
Rowe LA, Degtyareva N. and Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008; 45:1167-1177.
-
(2008)
Free Radic Biol Med
, vol.45
, pp. 1167-1177
-
-
Rowe, L.A.1
Degtyareva, N.2
Doetsch, P.W.3
-
47
-
-
67349287384
-
Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity
-
Garinis GA et al. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat Cell Biol. 2009; 11:604-615.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 604-615
-
-
Garinis, G.A.1
-
49
-
-
0016063911
-
The genetics of Caenorhabditis elegans
-
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77:71-94.
-
(1974)
Genetics
, vol.77
, pp. 71-94
-
-
Brenner, S.1
-
50
-
-
0242490780
-
Cytoscape: a software environment for integrated models of biomolecular interaction networks
-
Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498-2504.
-
(2003)
Genome Res
, vol.13
, pp. 2498-2504
-
-
Shannon, P.1
-
51
-
-
24044440971
-
BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
-
Maere S, Heymans K. and Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005; 21:3448-3849.
-
(2005)
Bioinformatics
, vol.21
, pp. 3448-3849
-
-
Maere, S.1
Heymans, K.2
Kuiper, M.3
-
52
-
-
0038005018
-
DAVID: Database for Annotation, Visualization, and Integrated Discovery
-
P3
-
Dennis G Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003; 4:P3.
-
(2003)
Genome Biol
, vol.4
-
-
Dennis Jr., G.1
-
53
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang da W, Sherman BT, and Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44-57.
-
(2009)
Nat Protoc
, vol.4
, pp. 44-57
-
-
Huang da, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
54
-
-
65349085291
-
Global networks of functional coupling in eukaryotes from comprehensive data integration
-
Alexeyenko A and Sonnhammer EL. Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res. 2009; 19:1107-1116.
-
(2009)
Genome Res
, vol.19
, pp. 1107-1116
-
-
Alexeyenko, A.1
Sonnhammer, E.L.2
-
55
-
-
67349276677
-
Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone
-
Przybysz AJ et al. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev. 2009; 130: 357-369.
-
(2009)
Mech Ageing Dev
, vol.130
, pp. 357-369
-
-
Przybysz, A.J.1
-
56
-
-
0027771804
-
A C. elegans mutant that lives twice as long as wild type
-
Kenyon C et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461-464.
-
(1993)
Nature
, vol.366
, pp. 461-464
-
-
Kenyon, C.1
|