-
2
-
-
0003713964
-
-
Athena Scientific, Belmont, MA, second edition
-
Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition, 1999.
-
(1999)
Nonlinear Programming
-
-
Bertsekas, D.P.1
-
3
-
-
0034345420
-
Nonmonotone spectral projected gradient methods on convex sets
-
Ernesto G. Birgin, José Mario Martinez, and Marcos Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 10(4):1196-1211, 2000.
-
(2000)
SIAM Journal on Optimization
, vol.10
, Issue.4
, pp. 1196-1211
-
-
Birgin, E.G.1
Martinez, J.M.2
Raydan, M.3
-
4
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
David Haussler, editor. ACM Press, Pittsburgh, PA
-
Bernhard E. Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. In David Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144-152. ACM Press, Pittsburgh, PA, 1992.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.N.3
-
6
-
-
26944441889
-
A study on SMO-type decomposition methods for support vector machines
-
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
-
Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin. A study on SMO-type decomposition methods for support vector machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2005.
-
(2005)
Technical Report
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
8
-
-
0000913324
-
SVMTorch: Support vector machines for large-scale regression problems
-
Ronan Collobert and Samy Bengio. SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1:143-160,2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
9
-
-
0036583160
-
A parallel mixture of SVMs for very large scale problems
-
Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very large scale problems. Neural Computation, 14(5):1105-1114, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.5
, pp. 1105-1114
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
11
-
-
33644511085
-
New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds
-
Yu-Hong Dai and Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Mathematical Programming, 106(3):403-421, 2006.
-
(2006)
Mathematical Programming
, vol.106
, Issue.3
, pp. 403-421
-
-
Dai, Y.-H.1
Fletcher, R.2
-
12
-
-
15544385032
-
Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming
-
Yu-Hong Dai and Roger Fletcher. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numerische Mathematik, 100(1):21-47, 2005.
-
(2005)
Numerische Mathematik
, vol.100
, Issue.1
, pp. 21-47
-
-
Dai, Y.-H.1
Fletcher, R.2
-
13
-
-
8344226915
-
A fast parallel optimization for training support vector machine
-
P. Perner and A. Rosenfeld, editors. Springer Lecture Notes in Artificial Intelligence, Leipzig, Germany
-
Jian-Xiong Dong, Adam Krzyzak, and Ching Y. Suen. A fast parallel optimization for training support vector machine. In P. Perner and A. Rosenfeld, editors, Proceedings of 3rd International Conference on Machine Learning and Data Mining, volume 17, pages 96-105. Springer Lecture Notes in Artificial Intelligence, Leipzig, Germany, 2003.
-
(2003)
Proceedings of 3rd International Conference on Machine Learning and Data Mining
, vol.17
, pp. 96-105
-
-
Dong, J.-X.1
Krzyzak, A.2
Suen, C.Y.3
-
14
-
-
29144499905
-
Working set selection using second order information for training Support Vector Machines
-
Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order information for training Support Vector Machines. Journal of Machine Learning Research, 6:1889-1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
15
-
-
84898956286
-
Parallel support vector machines: The Cascade SVM
-
Lawrence Saul, Yair Weiss, and Léon Bottou, editors. MIT Press
-
Hans Peter Graf, Eric Cosatto, Léon Bottou, Igor Dourdanovic, and Vladimir N. Vapnik. Parallel support vector machines: the Cascade SVM. In Lawrence Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems, volume 17. MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
-
-
Graf, H.P.1
Cosatto, E.2
Bottou, L.3
Dourdanovic, I.4
Vapnik, V.N.5
-
16
-
-
0036158552
-
A simple decomposition method for support vector machines
-
Chih-Wei Hsu and Chih-Jen Lin. A simple decomposition method for support vector machines. Machine Learning, 46:291-314, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 291-314
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
17
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
Don Hush and Clint Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51-71, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
18
-
-
0002714543
-
Making large-scale SVM learning practical
-
Bernard Schölkopf, C.J.C. Burges, and Alex Smola, editors. MIT Press, Cambridge, MA
-
Throstem Joachims. Making large-scale SVM learning practical. In Bernard Schölkopf, C.J.C. Burges, and Alex Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
19
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
S. Sathiya Keerthi and Elmer G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46:351-360, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
20
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Chih-Jen Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12:1288-1298, 2001a.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.-J.1
-
21
-
-
0038178786
-
Linear convergence of a decomposition method for support vector machines
-
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
-
Chih-Jen Lin. Linear convergence of a decomposition method for support vector machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2001b.
-
(2001)
Technical Report
-
-
Lin, C.-J.1
-
22
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13:248-250, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 248-250
-
-
Lin, C.-J.1
-
23
-
-
33745774600
-
MPI: A message-passing interface standard (version 1.2)
-
Also available as Technical Report CS-94-230, Computer Science Dept., University of Tennesse, Knoxville, TN
-
Message Passing Interface Forum. MPI: A message-passing interface standard (version 1.2). International Journal of Super computing Applications, 8(3/4), 1995. URL http://www.mpi-forum.org. Also available as Technical Report CS-94-230, Computer Science Dept., University of Tennesse, Knoxville, TN.
-
(1995)
International Journal of Super Computing Applications
, vol.8
, Issue.3-4
-
-
-
24
-
-
0003446306
-
MINOS 5.5 user's guide
-
Department of Operation Research, Stanford University, Stanford CA
-
Bruce A. Murtagh and Michael A. Saunders. MINOS 5.5 user's guide. Technical report, Department of Operation Research, Stanford University, Stanford CA, 1998.
-
(1998)
Technical Report
-
-
Murtagh, B.A.1
Saunders, M.A.2
-
25
-
-
0030673582
-
Training support vector machines: An application to face detection
-
IEEE Computer Society, New York
-
Edgar Osuna, Robert Freund, and Girosi Federico. Training support vector machines: an application to face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR97), pages 130-136. IEEE Computer Society, New York, 1997.
-
(1997)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR97)
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Federico, G.3
-
27
-
-
0000859664
-
An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
-
Panos M. Pardalos and Naina Kovoor. An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Mathematical Programming, 46:321-328, 1990.
-
(1990)
Mathematical Programming
, vol.46
, pp. 321-328
-
-
Pardalos, P.M.1
Kovoor, N.2
-
28
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Bernard Schölkopf, C.J.C. Burges, and Alex Smola, editors. MIT Press, Cambridge, MA
-
John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernard Schölkopf, C.J.C. Burges, and Alex Smola, editors, Advances in Kernel Methods -Support Vector Learning. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Kernel Methods -Support Vector Learning
-
-
Platt, J.C.1
-
29
-
-
0034134885
-
A modified projection algorithm for large strictly convex quadratic programs
-
Valeria Ruggiero and Luca Zanni. A modified projection algorithm for large strictly convex quadratic programs. Journal of Optimization Theory and Applications, 104(2):281-299, 2000a.
-
(2000)
Journal of Optimization Theory and Applications
, vol.104
, Issue.2
, pp. 281-299
-
-
Ruggiero, V.1
Zanni, L.2
-
30
-
-
0012540092
-
Variable projection methods for large convex quadratic programs
-
Donato Trigiante, editor, Recent Trends in Numerical Analysis. Nova Science Publisher
-
Valeria Ruggiero and Luca Zanni. Variable projection methods for large convex quadratic programs. In Donato Trigiante, editor, Recent Trends in Numerical Analysis, volume 3 of Advances in the Theory of Computational Mathematics, pages 299-313. Nova Science Publisher, 2000b.
-
(2000)
Advances in the Theory of Computational Mathematics
, vol.3
, pp. 299-313
-
-
Ruggiero, V.1
Zanni, L.2
-
31
-
-
27744479938
-
On the working set selection in gradient projection-based decomposition techniques for support vector machines
-
Thomas Serafini and Luca Zanni. On the working set selection in gradient projection-based decomposition techniques for support vector machines. Optimization Methods and Software, 20:583-596, 2005.
-
(2005)
Optimization Methods and Software
, vol.20
, pp. 583-596
-
-
Serafini, T.1
Zanni, L.2
-
32
-
-
12444278992
-
Gradient projection methods for quadratic programs and applications in training support vector machines
-
Thomas Serafini, Gaetano Zanghirati, and Luca Zanni. Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20:353-378, 2005.
-
(2005)
Optimization Methods and Software
, vol.20
, pp. 353-378
-
-
Serafini, T.1
Zanghirati, G.2
Zanni, L.3
-
34
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: fast SVM training on very large data sets. Journal of Machine Learning Research, 6(4):363-392, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.4
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
36
-
-
0037378238
-
A parallel solver for large quadratic programs in training support vector machines
-
Gaetano Zanghirati and Luca Zanni. A parallel solver for large quadratic programs in training support vector machines. Parallel Computing, 29:535-551, 2003.
-
(2003)
Parallel Computing
, vol.29
, pp. 535-551
-
-
Zanghirati, G.1
Zanni, L.2
-
37
-
-
33645025197
-
An improved gradient projection-based decomposition technique for support vector machines
-
Luca Zanni. An improved gradient projection-based decomposition technique for support vector machines. Computational Management Science, 3(2):131-145, 2006.
-
(2006)
Computational Management Science
, vol.3
, Issue.2
, pp. 131-145
-
-
Zanni, L.1
|