메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1775-1822

Exponentiated gradient algorithms for conditional random fields and max-margin Markov networks

Author keywords

Conditional random fields; Exponentiated gradient; Log linear models; Maximum margin models; Structured prediction

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BOOLEAN FUNCTIONS; CHLORINE COMPOUNDS; COMPUTER NETWORKS; COMPUTER PROGRAMMING LANGUAGES; EDUCATION; FORECASTING; GRADIENT METHODS; LEARNING SYSTEMS; REGRESSION ANALYSIS; STOCHASTIC MODELS; STRUCTURED PROGRAMMING;

EID: 50949133940     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (127)

References (42)
  • 1
    • 0002703873 scopus 로고
    • Trainable grammars for speech recognition
    • J.J. Wolf and D.H. Klatt, editors, Acoustical Society of America, New York, NY
    • J. Baker. Trainable grammars for speech recognition. In J.J. Wolf and D.H. Klatt, editors, Proceedings of the 97th meeting of the Acoustical Society of America, pages 547-550. Acoustical Society of America, New York, NY, 1979.
    • (1979) Proceedings of the 97th meeting of the Acoustical Society of America , pp. 547-550
    • Baker, J.1
  • 2
    • 84898992474 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for large-margin structured classification
    • L. K. Saul, Y. Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
    • P. L. Bartlett, M. Collins, B. Taskar, and D. McAllester. Exponentiated gradient algorithms for large-margin structured classification. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 113-120, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 113-120
    • Bartlett, P.L.1    Collins, M.2    Taskar, B.3    McAllester, D.4
  • 3
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Computational Mathematics and Mathematical Physics, 7:200-217, 1967.
    • (1967) U.S.S.R. Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 12
    • 50949109579 scopus 로고    scopus 로고
    • N. Cristianini, C. Campbell, and J. Shawe-Taylor. Multiplicative updatings for support-vector learning. Technical report, NC-TR-98-016, Neuro COLT, Royal Holloway College, 1998.
    • N. Cristianini, C. Campbell, and J. Shawe-Taylor. Multiplicative updatings for support-vector learning. Technical report, NC-TR-98-016, Neuro COLT, Royal Holloway College, 1998.
  • 14
    • 33646392997 scopus 로고    scopus 로고
    • QP algorithms with guaranteed accuracy and run time for support vector machines
    • D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed accuracy and run time for support vector machines. Journal of Machine Learning Research, 7:733-769, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 733-769
    • Hush, D.1    Kelly, P.2    Scovel, C.3    Steinwart, I.4
  • 18
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-63, 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.2
  • 19
    • 0035575628 scopus 로고    scopus 로고
    • Relative loss bounds for multidimensional regression problems
    • J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Machine Learning, 45(3):301-329, 2001.
    • (2001) Machine Learning , vol.45 , Issue.3 , pp. 301-329
    • Kivinen, J.1    Warmuth, M.2
  • 22
    • 0142192295 scopus 로고    scopus 로고
    • Conditonal random fields: Probabilistic models for segmenting and labeling sequence data
    • C.E. Brodley and A.P. Danyluk, editors, San Francisco, CA, Morgan Kaufmann
    • J. Lafferty, A. McCallum, and F. Pereira. Conditonal random fields: Probabilistic models for segmenting and labeling sequence data. In C.E. Brodley and A.P. Danyluk, editors, Proceedings of the 18th International Conference on Machine Learning, pages 282-289, San Francisco, CA, 2001. Morgan Kaufmann.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 23
    • 84898999495 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
    • G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 447-454. MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 447-454
    • Lebanon, G.1    Lafferty, J.2
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.Y.3    Haffner, P.4
  • 26
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • Association for Computational Linguistics
    • R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of dependency parsers. In Proceedings of the 43rd Annual Meeting of the ACL, pages 91-98. Association for Computational Linguistics, 2005.
    • (2005) Proceedings of the 43rd Annual Meeting of the ACL , pp. 91-98
    • McDonald, R.1    Crammer, K.2    Pereira, F.3
  • 27
    • 34547972634 scopus 로고    scopus 로고
    • Dual optimization of conditional probability models
    • Technical report, University of Toronto
    • R. Memisevic. Dual optimization of conditional probability models. Technical report, University of Toronto, 2006.
    • (2006)
    • Memisevic, R.1
  • 28
    • 21244446518 scopus 로고    scopus 로고
    • A comparison of numerical optimizers for logistic regression
    • Technical report, Carnegie Mellon University
    • T. Minka. A comparison of numerical optimizers for logistic regression. Technical report, Carnegie Mellon University, 2003.
    • (2003)
    • Minka, T.1
  • 30
    • 0036342213 scopus 로고    scopus 로고
    • Incremental subgradient methods for nondifferentiable optimization
    • A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 12(1):109-138, 2001.
    • (2001) SIAM Journal on Optimization , vol.12 , Issue.1 , pp. 109-138
    • Nedic, A.1    Bertsekas, D.P.2
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schöopf, C. Burges, and A. Smola, editors, MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schöopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 41-64. MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 41-64
    • Platt, J.1
  • 33
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • F. Sha, Y. Lin, L.K. Saul, and D.D. Lee. Multiplicative updates for nonnegative quadratic programming. Neural Computation, 19(8):2004-2031, 2007.
    • (2007) Neural Computation , vol.19 , Issue.8 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.K.3    Lee, D.D.4
  • 35
    • 84898948585 scopus 로고    scopus 로고
    • Max margin Markov networks
    • S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
    • B. Taskar, C. Guestrin, and D. Koller. Max margin Markov networks. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25-32. MIT Press, Cambridge, MA, 2004a.
    • (2004) Advances in Neural Information Processing Systems 16 , pp. 25-32
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 41
    • 0036158505 scopus 로고    scopus 로고
    • On the dual formulation of regularized linear systems with convex risks
    • T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learning, 46:91-129, 2002.
    • (2002) Machine Learning , vol.46 , pp. 91-129
    • Zhang, T.1
  • 42
    • 0347585601 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
    • J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 1081-1088. MIT Press, Cambridge, MA, 2001.
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 1081-1088
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.