-
2
-
-
0023947965
-
Pharmaceutical innovation by the seve UK-owned pharmaceutical companies 1964-1985
-
Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seve UK-owned pharmaceutical companies (1964-1985). Br J Clin Pharmacol 1988;25:387-396
-
(1988)
Br J Clin Pharmacol
, vol.25
, pp. 387-396
-
-
Prentis, R.A.1
Lis, Y.2
Walker, S.R.3
-
3
-
-
0030886937
-
Managing the drug discovery/development interface
-
Kennedy T. Managing the drug discovery/development interface. Drug Discov Today 1997;2:436-444
-
(1997)
Drug Discov Today
, vol.2
, pp. 436-444
-
-
Kennedy, T.1
-
4
-
-
24944547571
-
Why drugs fail-a study on side effects in new chemical entities
-
Schuster D, Laggner C, Langer T. Why drugs fail-a study on side effects in new chemical entities. Curr Pharm Des 2005;11(27):3545-3559
-
(2005)
Curr Pharm des
, vol.11
, Issue.27
, pp. 3545-3559
-
-
Schuster, D.1
Laggner, C.2
Langer, T.3
-
5
-
-
0037374498
-
The price of innovation: New estimates of drug development costs
-
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22(2):151-185
-
(2003)
J Health Econ
, vol.22
, Issue.2
, pp. 151-185
-
-
Dimasi, J.A.1
Hansen, R.W.2
Grabowski, H.G.3
-
6
-
-
33749042117
-
Drug-induced phospholipidosis
-
Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett 2006;580:5533-5540
-
(2006)
FEBS Lett
, vol.580
, pp. 5533-5540
-
-
Anderson, N.1
Borlak, J.2
-
7
-
-
59149091775
-
Weka machine learning for predicting the phospholipidosis inducing potential
-
Ivanciuc O. Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 2008;8(18):1691-1709
-
(2008)
Curr Top Med Chem
, vol.8
, Issue.18
, pp. 1691-1709
-
-
Ivanciuc, O.1
-
8
-
-
0035687129
-
Drug-induced phospholipidosis: Are there functional consequences?
-
Reasor MJ, Kacew S. Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med 2001;226(9):825-830
-
(2001)
Exp Biol Med
, vol.226
, Issue.9
, pp. 825-830
-
-
Reasor, M.J.1
Kacew, S.2
-
9
-
-
33845870927
-
In silico prediction of pregnane X receptor activators by machine learning approaches
-
Ung CY, Li H, Yap CW, Chen YZ. In silico prediction of pregnane X receptor activators by machine learning approaches. Mol Pharm 2007;71(1):158-168
-
(2007)
Mol Pharm
, vol.71
, Issue.1
, pp. 158-168
-
-
Ung, C.Y.1
Li, H.2
Yap, C.W.3
Chen, Y.Z.4
-
10
-
-
74549144266
-
Challenges predicting ligand-receptor interactions of promiscuous proteins: The nuclear receptor PXR
-
doi:10.1371/journal.pcbi.1000594
-
Ekins S, Kortagere S, Iyer M, et al. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR. PLoS Comput Biol 2009;5(12):e1000594. doi:10.1371/journal.pcbi.1000594
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.12
-
-
Ekins, S.1
Kortagere, S.2
Iyer, M.3
-
11
-
-
36849009228
-
Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins
-
Li H, Yap CW, Ung CY, et al. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci 2007;96(11):2838-2860
-
(2007)
J Pharm Sci
, vol.96
, Issue.11
, pp. 2838-2860
-
-
Li, H.1
Yap, C.W.2
Ung, C.Y.3
-
12
-
-
66849131413
-
The applications of machine learning algorithms in the modeling of estrogen-like chemicals
-
Liu H, Yao X, Gramatica P. The applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb Chem High Throughput Screen 2009;12:490-496
-
(2009)
Comb Chem High Throughput Screen
, vol.12
, pp. 490-496
-
-
Liu, H.1
Yao, X.2
Gramatica, P.3
-
13
-
-
33645317063
-
HERG potassium channels and cardiac arrhythmia
-
Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006;440:463-469
-
(2006)
Nature
, vol.440
, pp. 463-469
-
-
Sanguinetti, M.C.1
Tristani-Firouzi, M.2
-
14
-
-
0033530381
-
Long QT syndromes and torsade de pointes
-
Viskin S. Long QT syndromes and torsade de pointes. Lancet 1999;354:1625-1633
-
(1999)
Lancet
, vol.354
, pp. 1625-1633
-
-
Viskin, S.1
-
15
-
-
34247111885
-
HERG is protected from pharmacological block by alpha-1,2- glucosyltransferase function
-
Nakajima T, Hayashi K, Viswanathan PC, et al. HERG is protected from pharmacological block by alpha-1,2-glucosyltransferase function. J Biol Chem 2007;282:5506-5513
-
(2007)
J Biol Chem
, vol.282
, pp. 5506-5513
-
-
Nakajima, T.1
Hayashi, K.2
Viswanathan, P.C.3
-
16
-
-
33845772315
-
Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
-
Bhavani S, Nagargadde A, Thawani A, et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J Chem Inf Model 2006;46:2478-2486
-
(2006)
J Chem Inf Model
, vol.46
, pp. 2478-2486
-
-
Bhavani, S.1
Nagargadde, A.2
Thawani, A.3
-
17
-
-
2442700335
-
Prediction of torsade causing potential of drugs by support vector machine approach
-
Yap CW, Cai CZ, Xue Y, Chen YZ. Prediction of torsade causing potential of drugs by support vector machine approach. Toxicol Sci 2004;79:170-177
-
(2004)
Toxicol Sci
, vol.79
, pp. 170-177
-
-
Yap, C.W.1
Cai, C.Z.2
Xue, Y.3
Chen, Y.Z.4
-
18
-
-
0035113097
-
The predictive toxicology challenge 2000-2001
-
Helma C, King RD, Kramer S, Srinivasan A. The predictive toxicology challenge 2000-2001. Bioinformatics 2001;17(1):107-108
-
(2001)
Bioinformatics
, vol.17
, Issue.1
, pp. 107-108
-
-
Helma, C.1
King, R.D.2
Kramer, S.3
Srinivasan, A.4
-
19
-
-
33845799670
-
A flexible approach for optimising in silico ADME/Tox characterisation of lead candidates
-
Bidualt Y. A flexible approach for optimising in silico ADME/Tox characterisation of lead candidates. Expert Opin Drug Metab Toxicol 2006;2(1):157-168
-
(2006)
Expert Opin Drug Metab Toxicol
, vol.2
, Issue.1
, pp. 157-168
-
-
Bidualt, Y.1
-
20
-
-
33745147614
-
Determination of hERG channel blockers using a decision tree
-
Gepp MM, Hutter MC. Determination of hERG channel blockers using a decision tree. Bioorg Med Chem 2006;14:5325-5332
-
(2006)
Bioorg Med Chem
, vol.14
, pp. 5325-5332
-
-
Gepp, M.M.1
Hutter, M.C.2
-
21
-
-
77953929230
-
-
Hyperchem. 6.03 ed. Hypercube, Inc., Gainesville, FL, USA
-
Hyperchem. 6.03 ed. Hypercube, Inc., Gainesville, FL, USA
-
-
-
-
23
-
-
67650067615
-
Bias-correction of regression models: A case study on hERG inhibition
-
Hansen K, Rathke F, Schroeter T, et al. Bias-correction of regression models: a case study on hERG inhibition. J Chem Inf Model 2009;49:1486-1496
-
(2009)
J Chem Inf Model
, vol.49
, pp. 1486-1496
-
-
Hansen, K.1
Rathke, F.2
Schroeter, T.3
-
24
-
-
0033523672
-
"Scaffold-Hopping" by topological pharmacophore search: A contribution to virtual screening
-
Schneider G, Neidhart W, Giller T, Schmid G. "Scaffold-Hopping" by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 1999;38(19):2894-2896
-
(1999)
Angew Chem Int Ed Engl
, vol.38
, Issue.19
, pp. 2894-2896
-
-
Schneider, G.1
Neidhart, W.2
Giller, T.3
Schmid, G.4
-
25
-
-
0033800498
-
VolSuf: A new tool for the pharmacokinetic optimization of lead compounds
-
Cruciani G, Pastor M, Guba W. VolSuf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 2000;11:29-39
-
(2000)
Eur J Pharm Sci
, vol.11
, pp. 29-39
-
-
Cruciani, G.1
Pastor, M.2
Guba, W.3
-
26
-
-
1842639123
-
A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption
-
Sun H. A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. J Chem Inf Comput Sci 2004;44(2):748-757
-
(2004)
J Chem Inf Comput Sci
, vol.44
, Issue.2
, pp. 748-757
-
-
Sun, H.1
-
27
-
-
44449153017
-
Support vector machines classification of hERG liabilities based on atom types
-
Jia L, Sun H. Support vector machines classification of hERG liabilities based on atom types. Bioorg Med Chem 2008;16:6252-6260
-
(2008)
Bioorg Med Chem
, vol.16
, pp. 6252-6260
-
-
Jia, L.1
Sun, H.2
-
28
-
-
33947183028
-
A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
-
Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol 2007;20:217-226
-
(2007)
Chem Res Toxicol
, vol.20
, pp. 217-226
-
-
Leong, M.K.1
-
29
-
-
58149086468
-
Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds
-
Nisius B, Goller AH, Bajorath J. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds. Chem Biol Drug Des 2009;73:17-25
-
(2009)
Chem Biol Drug des
, vol.73
, pp. 17-25
-
-
Nisius, B.1
Goller, A.H.2
Bajorath, J.3
-
30
-
-
35248832636
-
Gaussian processes: A method for automatic QSAR modeling of ADME properties
-
Obrezanova O, Csanyi G, Gola JM, Segall MD. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007;47(5):1847-1857
-
(2007)
J Chem Inf Model
, vol.47
, Issue.5
, pp. 1847-1857
-
-
Obrezanova, O.1
Csanyi, G.2
Gola, J.M.3
Segall, M.D.4
-
31
-
-
13944268698
-
Greater than the sum of its parts: Combining models for Useful ADMET Prediction
-
O'Brien SE, de Groot MJ. Greater than the sum of its parts: combining models for Useful ADMET Prediction. J Med Chem 2005;48:1287-1291
-
(2005)
J Med Chem
, vol.48
, pp. 1287-1291
-
-
O'Brien, S.E.1
De Groot, M.J.2
-
32
-
-
0025155575
-
An electrotopological-state index for atoms in molecules
-
Kier LB, Hall LH. An electrotopological-state index for atoms in molecules. Pharm Res 1990;7(8):801-807
-
(1990)
Pharm Res
, vol.7
, Issue.8
, pp. 801-807
-
-
Kier, L.B.1
Hall, L.H.2
-
33
-
-
0000850419
-
Automated descriptor selection and hyper structure generation to assist SAR studies
-
Downs GM, Gill GS, Willett P, Walsh P. Automated descriptor selection and hyper structure generation to assist SAR studies. SAR QSAR Environ Res 1995;3:253-264
-
(1995)
SAR QSAR Environ Res
, vol.3
, pp. 253-264
-
-
Downs, G.M.1
Gill, G.S.2
Willett, P.3
Walsh, P.4
-
34
-
-
33645856496
-
A QSAR model of hERG binding using a large, diverse, and internally consistent training set
-
Seierstad M, Agrafiotis DK. A QSAR model of hERG binding using a large, diverse, and internally consistent training set. Chem Biol Drug Des 2006;67(4):284-296
-
(2006)
Chem Biol Drug des
, vol.67
, Issue.4
, pp. 284-296
-
-
Seierstad, M.1
Agrafiotis, D.K.2
-
35
-
-
0000805679
-
The molecular connectivity chi indexes and kappa shape indexes in structure-property relations
-
Lipkowitz KB,Boyd DB, editors, VCH, New York, NY
-
Hall LH, Kier LB. The molecular connectivity chi indexes and kappa shape indexes in structure-property relations. In: Lipkowitz KB, Boyd DB, editors, Reviews in computational chemistry. VCH, New York, NY: 1991:367-422
-
(1991)
Reviews in Computational Chemistry
, pp. 367-422
-
-
Hall, L.H.1
Kier, L.B.2
-
36
-
-
0000381930
-
Properites of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods
-
Ghose AK, Viswanadhan VN, Wendoloski JJ. Properites of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 1998;102:3762-3772
-
(1998)
J Phys Chem A
, vol.102
, pp. 3762-3772
-
-
Ghose, A.K.1
Viswanadhan, V.N.2
Wendoloski, J.J.3
-
37
-
-
33845379303
-
Atom pairs as molecular features in structure-activity studies: Definition and applications
-
Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 1985;25(2):64-73
-
(1985)
J Chem Inf Comput Sci
, vol.25
, Issue.2
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Venkataraghavan, R.3
-
38
-
-
5444272497
-
Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
-
Xue Y, Li ZR, Yap CW, et al. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Comput Sci 2004;44:1630-1638
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1630-1638
-
-
Xue, Y.1
Li, Z.R.2
Yap, C.W.3
-
39
-
-
67349139293
-
An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
-
Yang S-Y, Huang Q, Li L-L, et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intel Med 2009;46:155-163
-
(2009)
Artif Intel Med
, vol.46
, pp. 155-163
-
-
Yang, S.-Y.1
Huang, Q.2
Li, L.-L.3
-
40
-
-
38949094492
-
Cytochrome P450 and chemical toxicology
-
Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
-
(2008)
Chem Res Toxicol
, vol.21
, pp. 70-83
-
-
Guengerich, F.P.1
-
41
-
-
33745574979
-
Drug interactions in cancer therapy
-
Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer 2006;6:546-558
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 546-558
-
-
Scripture, C.D.1
Figg, W.D.2
-
42
-
-
0037705711
-
Clinical relevance and management of drug-related QT interval prolongation
-
Crouch MA, Limon L, Cassano AT. Clinical relevance and management of drug-related QT interval prolongation. Pharmacotherapy 2003;23:881-908
-
(2003)
Pharmacotherapy
, vol.23
, pp. 881-908
-
-
Ma, C.1
Limon, L.2
Cassano, A.T.3
-
43
-
-
0032914554
-
The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: Potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy
-
Dehal SS, Brodie AM, Kupfer D. The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy. Drug Metab Dispos 1999;27(3):389-394
-
(1999)
Drug Metab Dispos
, vol.27
, Issue.3
, pp. 389-394
-
-
Dehal, S.S.1
Brodie, A.M.2
Kupfer, D.3
-
44
-
-
0036325773
-
Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4¢-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen
-
Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4¢-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002;30:869-874
-
(2002)
Drug Metab Dispos
, vol.30
, pp. 869-874
-
-
Crewe, H.K.1
Notley, L.M.2
Wunsch, R.M.3
-
45
-
-
0346602691
-
Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine
-
Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003;95:1758-1764
-
(2003)
J Natl Cancer Inst
, vol.95
, pp. 1758-1764
-
-
Stearns, V.1
Johnson, M.D.2
Rae, J.M.3
-
46
-
-
33644859466
-
Role of pharmacologically active metabolites in drug discovery and development
-
Fura A. Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today 2006;11:133-142
-
(2006)
Drug Discov Today
, vol.11
, pp. 133-142
-
-
Fura, A.1
-
47
-
-
0029866506
-
Evidence that the catechol 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins
-
Dehal SS, Kupfer D. Evidence that the catechol 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins. Cancer Res 1995;56:1283-1290
-
(1995)
Cancer Res
, vol.56
, pp. 1283-1290
-
-
Dehal, S.S.1
Kupfer, D.2
-
48
-
-
33846864233
-
Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
-
Eitrich T, Kless A, Druska C, et al. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007;47:92-103
-
(2007)
J Chem Inf Model
, vol.47
, pp. 92-103
-
-
Eitrich, T.1
Kless, A.2
Druska, C.3
-
49
-
-
71949083397
-
Classification of cytochrome P450 activities using machine learning methods
-
Hammann F, Gutmann H, Baumann U, et al. Classification of cytochrome P450 activities using machine learning methods. Mol Pharm 2009;6(6):19220-21926
-
(2009)
Mol Pharm
, vol.6
, Issue.6
, pp. 19220-21926
-
-
Hammann, F.1
Gutmann, H.2
Baumann, U.3
-
50
-
-
0043234176
-
Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach
-
Korolev D, Balakin KV, Nikolsky Y, et al. Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J Med Chem 2003;46:3631-3643
-
(2003)
J Med Chem
, vol.46
, pp. 3631-3643
-
-
Korolev, D.1
Balakin, K.V.2
Nikolsky, Y.3
-
51
-
-
22144466197
-
A support vector machine approach to classify human cytochrome P450 3A4 inhibitors
-
Kriegl JM, Arnhold T, Beck B, Fox T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 2005;19:189-201
-
(2005)
J Comput Aided Mol des
, vol.19
, pp. 189-201
-
-
Kriegl, J.M.1
Arnhold, T.2
Beck, B.3
Fox, T.4
-
52
-
-
61449219789
-
Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach
-
Leong MK, Chen Y-M, Chen H-B, Chen P-H. Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Pharm Res 2009;26(4):987-1000
-
(2009)
Pharm Res
, vol.26
, Issue.4
, pp. 987-1000
-
-
Leong, M.K.1
Chen, Y.-M.2
Chen, H.-B.3
Chen, P.-H.4
-
53
-
-
34547679825
-
Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates
-
Terfloth L, Bienfait B, Gasteiger J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 2007;47:1688-1701
-
(2007)
J Chem Inf Model
, vol.47
, pp. 1688-1701
-
-
Terfloth, L.1
Bienfait, B.2
Gasteiger, J.3
-
54
-
-
61449101715
-
Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
-
Vasanthanathan P, Taboureau O, Oostenbrink C, et al. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009;37(3):658-664
-
(2009)
Drug Metab Dispos
, vol.37
, Issue.3
, pp. 658-664
-
-
Vasanthanathan, P.1
Taboureau, O.2
Oostenbrink, C.3
-
55
-
-
65549103878
-
Site of metabolism prediction for six biotransformations mediated by cytochromes P450
-
Zheng M, Luo X, Shen Q, et al. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 2009;25(10):1251-1258
-
(2009)
Bioinformatics
, vol.25
, Issue.10
, pp. 1251-1258
-
-
Zheng, M.1
Luo, X.2
Shen, Q.3
-
56
-
-
77953947264
-
-
Bryn Mawr College, Philadelphia, PA
-
Hopfinger AJ. eChemInfo. Bryn Mawr College, Philadelphia, PA; 2007
-
(2007)
EChemInfo
-
-
Hopfinger, A.J.1
-
57
-
-
77953945535
-
Comparison of machine learning algorithms to predict ADME properties using chemical descriptors and molecular fingerprints
-
Bryn Mawr College Philadelphia PA
-
Klon AE. Comparison of machine learning algorithms to predict ADME properties using chemical descriptors and molecular fingerprints. eChemInfo. Bryn Mawr College, Philadelphia, PA; 2008
-
(2008)
EChemInfo
-
-
Klon, A.E.1
-
58
-
-
77953944496
-
Why models fail Herman skolnik award lecture
-
San francisco, CA
-
Kubinbyi H. Why models fail. Herman Skolnik Award Lecture, ACS Meeting. San francisco, CA; 2006
-
(2006)
ACS Meeting
-
-
Kubinbyi, H.1
-
59
-
-
77953937558
-
-
Organization for economic co-ordination and development. Available from [cited]
-
Organization for economic co-ordination and development. Available from: www.oecd.org [cited]
-
-
-
-
60
-
-
77953917826
-
-
OpenTox Project. Available from [Cited]
-
OpenTox Project. Available from: http://echeminfo.com/comty-randd [Cited]
-
-
-
-
61
-
-
4544385908
-
An efficient algorithm for discovering frequent subgraphs
-
Kuramochi M, Karypis G. An efficient algorithm for discovering frequent subgraphs. IEEE Trans Knol Data Eng 2004;16(9):1038-1051
-
(2004)
IEEE Trans Knol Data Eng
, vol.16
, Issue.9
, pp. 1038-1051
-
-
Kuramochi, M.1
Karypis, G.2
-
62
-
-
52649109749
-
Classification models for hERG inhibitors by counter-propagation neural networks
-
Thai K-M, Ecker GF. Classification models for hERG inhibitors by counter-propagation neural networks. Chem Biol Drug Des 2008;72:279-289
-
(2008)
Chem Biol Drug des
, vol.72
, pp. 279-289
-
-
Thai, K.-M.1
Ecker, G.F.2
-
63
-
-
61949197836
-
Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands
-
Vasanthanathan P, Hritz J, Taboureau O, et al. Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J Chem Inf Model 2009;49:43-52
-
(2009)
J Chem Inf Model
, vol.49
, pp. 43-52
-
-
Vasanthanathan, P.1
Hritz, J.2
Taboureau, O.3
|