메뉴 건너뛰기




Volumn 6, Issue 7, 2010, Pages 821-833

Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development

Author keywords

CYP; HERG; Machine learning; Metabolism; Torsade de pointes; Toxicity

Indexed keywords

3,4 DIHYDROXYTAMOXIFEN; 4 HYDROXYTAMOXIFEN; ANTIFUNGAL AGENT; CYTOCHROME P450; CYTOCHROME P450 1A2; CYTOCHROME P450 2C19; CYTOCHROME P450 2C9; CYTOCHROME P450 2D6; CYTOCHROME P450 3A4; DRUG METABOLITE; ENDOXIFEN; NORTAMOXIFEN; POTASSIUM CHANNEL HERG; PREGNANE X RECEPTOR; TAMOXIFEN; UNCLASSIFIED DRUG;

EID: 77953956128     PISSN: 17425255     EISSN: None     Source Type: Journal    
DOI: 10.1517/17425255.2010.489550     Document Type: Review
Times cited : (20)

References (63)
  • 2
    • 0023947965 scopus 로고
    • Pharmaceutical innovation by the seve UK-owned pharmaceutical companies 1964-1985
    • Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seve UK-owned pharmaceutical companies (1964-1985). Br J Clin Pharmacol 1988;25:387-396
    • (1988) Br J Clin Pharmacol , vol.25 , pp. 387-396
    • Prentis, R.A.1    Lis, Y.2    Walker, S.R.3
  • 3
    • 0030886937 scopus 로고    scopus 로고
    • Managing the drug discovery/development interface
    • Kennedy T. Managing the drug discovery/development interface. Drug Discov Today 1997;2:436-444
    • (1997) Drug Discov Today , vol.2 , pp. 436-444
    • Kennedy, T.1
  • 4
    • 24944547571 scopus 로고    scopus 로고
    • Why drugs fail-a study on side effects in new chemical entities
    • Schuster D, Laggner C, Langer T. Why drugs fail-a study on side effects in new chemical entities. Curr Pharm Des 2005;11(27):3545-3559
    • (2005) Curr Pharm des , vol.11 , Issue.27 , pp. 3545-3559
    • Schuster, D.1    Laggner, C.2    Langer, T.3
  • 5
    • 0037374498 scopus 로고    scopus 로고
    • The price of innovation: New estimates of drug development costs
    • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22(2):151-185
    • (2003) J Health Econ , vol.22 , Issue.2 , pp. 151-185
    • Dimasi, J.A.1    Hansen, R.W.2    Grabowski, H.G.3
  • 6
    • 33749042117 scopus 로고    scopus 로고
    • Drug-induced phospholipidosis
    • Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett 2006;580:5533-5540
    • (2006) FEBS Lett , vol.580 , pp. 5533-5540
    • Anderson, N.1    Borlak, J.2
  • 7
    • 59149091775 scopus 로고    scopus 로고
    • Weka machine learning for predicting the phospholipidosis inducing potential
    • Ivanciuc O. Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 2008;8(18):1691-1709
    • (2008) Curr Top Med Chem , vol.8 , Issue.18 , pp. 1691-1709
    • Ivanciuc, O.1
  • 8
    • 0035687129 scopus 로고    scopus 로고
    • Drug-induced phospholipidosis: Are there functional consequences?
    • Reasor MJ, Kacew S. Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med 2001;226(9):825-830
    • (2001) Exp Biol Med , vol.226 , Issue.9 , pp. 825-830
    • Reasor, M.J.1    Kacew, S.2
  • 9
    • 33845870927 scopus 로고    scopus 로고
    • In silico prediction of pregnane X receptor activators by machine learning approaches
    • Ung CY, Li H, Yap CW, Chen YZ. In silico prediction of pregnane X receptor activators by machine learning approaches. Mol Pharm 2007;71(1):158-168
    • (2007) Mol Pharm , vol.71 , Issue.1 , pp. 158-168
    • Ung, C.Y.1    Li, H.2    Yap, C.W.3    Chen, Y.Z.4
  • 10
    • 74549144266 scopus 로고    scopus 로고
    • Challenges predicting ligand-receptor interactions of promiscuous proteins: The nuclear receptor PXR
    • doi:10.1371/journal.pcbi.1000594
    • Ekins S, Kortagere S, Iyer M, et al. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR. PLoS Comput Biol 2009;5(12):e1000594. doi:10.1371/journal.pcbi.1000594
    • (2009) PLoS Comput Biol , vol.5 , Issue.12
    • Ekins, S.1    Kortagere, S.2    Iyer, M.3
  • 11
    • 36849009228 scopus 로고    scopus 로고
    • Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins
    • Li H, Yap CW, Ung CY, et al. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci 2007;96(11):2838-2860
    • (2007) J Pharm Sci , vol.96 , Issue.11 , pp. 2838-2860
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3
  • 12
    • 66849131413 scopus 로고    scopus 로고
    • The applications of machine learning algorithms in the modeling of estrogen-like chemicals
    • Liu H, Yao X, Gramatica P. The applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb Chem High Throughput Screen 2009;12:490-496
    • (2009) Comb Chem High Throughput Screen , vol.12 , pp. 490-496
    • Liu, H.1    Yao, X.2    Gramatica, P.3
  • 13
    • 33645317063 scopus 로고    scopus 로고
    • HERG potassium channels and cardiac arrhythmia
    • Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006;440:463-469
    • (2006) Nature , vol.440 , pp. 463-469
    • Sanguinetti, M.C.1    Tristani-Firouzi, M.2
  • 14
    • 0033530381 scopus 로고    scopus 로고
    • Long QT syndromes and torsade de pointes
    • Viskin S. Long QT syndromes and torsade de pointes. Lancet 1999;354:1625-1633
    • (1999) Lancet , vol.354 , pp. 1625-1633
    • Viskin, S.1
  • 15
    • 34247111885 scopus 로고    scopus 로고
    • HERG is protected from pharmacological block by alpha-1,2- glucosyltransferase function
    • Nakajima T, Hayashi K, Viswanathan PC, et al. HERG is protected from pharmacological block by alpha-1,2-glucosyltransferase function. J Biol Chem 2007;282:5506-5513
    • (2007) J Biol Chem , vol.282 , pp. 5506-5513
    • Nakajima, T.1    Hayashi, K.2    Viswanathan, P.C.3
  • 16
    • 33845772315 scopus 로고    scopus 로고
    • Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
    • Bhavani S, Nagargadde A, Thawani A, et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J Chem Inf Model 2006;46:2478-2486
    • (2006) J Chem Inf Model , vol.46 , pp. 2478-2486
    • Bhavani, S.1    Nagargadde, A.2    Thawani, A.3
  • 17
    • 2442700335 scopus 로고    scopus 로고
    • Prediction of torsade causing potential of drugs by support vector machine approach
    • Yap CW, Cai CZ, Xue Y, Chen YZ. Prediction of torsade causing potential of drugs by support vector machine approach. Toxicol Sci 2004;79:170-177
    • (2004) Toxicol Sci , vol.79 , pp. 170-177
    • Yap, C.W.1    Cai, C.Z.2    Xue, Y.3    Chen, Y.Z.4
  • 19
    • 33845799670 scopus 로고    scopus 로고
    • A flexible approach for optimising in silico ADME/Tox characterisation of lead candidates
    • Bidualt Y. A flexible approach for optimising in silico ADME/Tox characterisation of lead candidates. Expert Opin Drug Metab Toxicol 2006;2(1):157-168
    • (2006) Expert Opin Drug Metab Toxicol , vol.2 , Issue.1 , pp. 157-168
    • Bidualt, Y.1
  • 20
    • 33745147614 scopus 로고    scopus 로고
    • Determination of hERG channel blockers using a decision tree
    • Gepp MM, Hutter MC. Determination of hERG channel blockers using a decision tree. Bioorg Med Chem 2006;14:5325-5332
    • (2006) Bioorg Med Chem , vol.14 , pp. 5325-5332
    • Gepp, M.M.1    Hutter, M.C.2
  • 21
    • 77953929230 scopus 로고    scopus 로고
    • Hyperchem. 6.03 ed. Hypercube, Inc., Gainesville, FL, USA
    • Hyperchem. 6.03 ed. Hypercube, Inc., Gainesville, FL, USA
  • 23
    • 67650067615 scopus 로고    scopus 로고
    • Bias-correction of regression models: A case study on hERG inhibition
    • Hansen K, Rathke F, Schroeter T, et al. Bias-correction of regression models: a case study on hERG inhibition. J Chem Inf Model 2009;49:1486-1496
    • (2009) J Chem Inf Model , vol.49 , pp. 1486-1496
    • Hansen, K.1    Rathke, F.2    Schroeter, T.3
  • 24
    • 0033523672 scopus 로고    scopus 로고
    • "Scaffold-Hopping" by topological pharmacophore search: A contribution to virtual screening
    • Schneider G, Neidhart W, Giller T, Schmid G. "Scaffold-Hopping" by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 1999;38(19):2894-2896
    • (1999) Angew Chem Int Ed Engl , vol.38 , Issue.19 , pp. 2894-2896
    • Schneider, G.1    Neidhart, W.2    Giller, T.3    Schmid, G.4
  • 25
    • 0033800498 scopus 로고    scopus 로고
    • VolSuf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani G, Pastor M, Guba W. VolSuf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 2000;11:29-39
    • (2000) Eur J Pharm Sci , vol.11 , pp. 29-39
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 26
    • 1842639123 scopus 로고    scopus 로고
    • A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption
    • Sun H. A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. J Chem Inf Comput Sci 2004;44(2):748-757
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.2 , pp. 748-757
    • Sun, H.1
  • 27
    • 44449153017 scopus 로고    scopus 로고
    • Support vector machines classification of hERG liabilities based on atom types
    • Jia L, Sun H. Support vector machines classification of hERG liabilities based on atom types. Bioorg Med Chem 2008;16:6252-6260
    • (2008) Bioorg Med Chem , vol.16 , pp. 6252-6260
    • Jia, L.1    Sun, H.2
  • 28
    • 33947183028 scopus 로고    scopus 로고
    • A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
    • Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol 2007;20:217-226
    • (2007) Chem Res Toxicol , vol.20 , pp. 217-226
    • Leong, M.K.1
  • 29
    • 58149086468 scopus 로고    scopus 로고
    • Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds
    • Nisius B, Goller AH, Bajorath J. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds. Chem Biol Drug Des 2009;73:17-25
    • (2009) Chem Biol Drug des , vol.73 , pp. 17-25
    • Nisius, B.1    Goller, A.H.2    Bajorath, J.3
  • 30
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova O, Csanyi G, Gola JM, Segall MD. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007;47(5):1847-1857
    • (2007) J Chem Inf Model , vol.47 , Issue.5 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.3    Segall, M.D.4
  • 31
    • 13944268698 scopus 로고    scopus 로고
    • Greater than the sum of its parts: Combining models for Useful ADMET Prediction
    • O'Brien SE, de Groot MJ. Greater than the sum of its parts: combining models for Useful ADMET Prediction. J Med Chem 2005;48:1287-1291
    • (2005) J Med Chem , vol.48 , pp. 1287-1291
    • O'Brien, S.E.1    De Groot, M.J.2
  • 32
    • 0025155575 scopus 로고
    • An electrotopological-state index for atoms in molecules
    • Kier LB, Hall LH. An electrotopological-state index for atoms in molecules. Pharm Res 1990;7(8):801-807
    • (1990) Pharm Res , vol.7 , Issue.8 , pp. 801-807
    • Kier, L.B.1    Hall, L.H.2
  • 33
    • 0000850419 scopus 로고
    • Automated descriptor selection and hyper structure generation to assist SAR studies
    • Downs GM, Gill GS, Willett P, Walsh P. Automated descriptor selection and hyper structure generation to assist SAR studies. SAR QSAR Environ Res 1995;3:253-264
    • (1995) SAR QSAR Environ Res , vol.3 , pp. 253-264
    • Downs, G.M.1    Gill, G.S.2    Willett, P.3    Walsh, P.4
  • 34
    • 33645856496 scopus 로고    scopus 로고
    • A QSAR model of hERG binding using a large, diverse, and internally consistent training set
    • Seierstad M, Agrafiotis DK. A QSAR model of hERG binding using a large, diverse, and internally consistent training set. Chem Biol Drug Des 2006;67(4):284-296
    • (2006) Chem Biol Drug des , vol.67 , Issue.4 , pp. 284-296
    • Seierstad, M.1    Agrafiotis, D.K.2
  • 35
    • 0000805679 scopus 로고
    • The molecular connectivity chi indexes and kappa shape indexes in structure-property relations
    • Lipkowitz KB,Boyd DB, editors, VCH, New York, NY
    • Hall LH, Kier LB. The molecular connectivity chi indexes and kappa shape indexes in structure-property relations. In: Lipkowitz KB, Boyd DB, editors, Reviews in computational chemistry. VCH, New York, NY: 1991:367-422
    • (1991) Reviews in Computational Chemistry , pp. 367-422
    • Hall, L.H.1    Kier, L.B.2
  • 36
    • 0000381930 scopus 로고    scopus 로고
    • Properites of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods
    • Ghose AK, Viswanadhan VN, Wendoloski JJ. Properites of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 1998;102:3762-3772
    • (1998) J Phys Chem A , vol.102 , pp. 3762-3772
    • Ghose, A.K.1    Viswanadhan, V.N.2    Wendoloski, J.J.3
  • 37
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structure-activity studies: Definition and applications
    • Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 1985;25(2):64-73
    • (1985) J Chem Inf Comput Sci , vol.25 , Issue.2 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Venkataraghavan, R.3
  • 38
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y, Li ZR, Yap CW, et al. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Comput Sci 2004;44:1630-1638
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3
  • 39
    • 67349139293 scopus 로고    scopus 로고
    • An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
    • Yang S-Y, Huang Q, Li L-L, et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intel Med 2009;46:155-163
    • (2009) Artif Intel Med , vol.46 , pp. 155-163
    • Yang, S.-Y.1    Huang, Q.2    Li, L.-L.3
  • 40
    • 38949094492 scopus 로고    scopus 로고
    • Cytochrome P450 and chemical toxicology
    • Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
    • (2008) Chem Res Toxicol , vol.21 , pp. 70-83
    • Guengerich, F.P.1
  • 41
    • 33745574979 scopus 로고    scopus 로고
    • Drug interactions in cancer therapy
    • Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer 2006;6:546-558
    • (2006) Nat Rev Cancer , vol.6 , pp. 546-558
    • Scripture, C.D.1    Figg, W.D.2
  • 42
    • 0037705711 scopus 로고    scopus 로고
    • Clinical relevance and management of drug-related QT interval prolongation
    • Crouch MA, Limon L, Cassano AT. Clinical relevance and management of drug-related QT interval prolongation. Pharmacotherapy 2003;23:881-908
    • (2003) Pharmacotherapy , vol.23 , pp. 881-908
    • Ma, C.1    Limon, L.2    Cassano, A.T.3
  • 43
    • 0032914554 scopus 로고    scopus 로고
    • The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: Potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy
    • Dehal SS, Brodie AM, Kupfer D. The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy. Drug Metab Dispos 1999;27(3):389-394
    • (1999) Drug Metab Dispos , vol.27 , Issue.3 , pp. 389-394
    • Dehal, S.S.1    Brodie, A.M.2    Kupfer, D.3
  • 44
    • 0036325773 scopus 로고    scopus 로고
    • Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4¢-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen
    • Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4¢-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002;30:869-874
    • (2002) Drug Metab Dispos , vol.30 , pp. 869-874
    • Crewe, H.K.1    Notley, L.M.2    Wunsch, R.M.3
  • 45
    • 0346602691 scopus 로고    scopus 로고
    • Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine
    • Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003;95:1758-1764
    • (2003) J Natl Cancer Inst , vol.95 , pp. 1758-1764
    • Stearns, V.1    Johnson, M.D.2    Rae, J.M.3
  • 46
    • 33644859466 scopus 로고    scopus 로고
    • Role of pharmacologically active metabolites in drug discovery and development
    • Fura A. Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today 2006;11:133-142
    • (2006) Drug Discov Today , vol.11 , pp. 133-142
    • Fura, A.1
  • 47
    • 0029866506 scopus 로고
    • Evidence that the catechol 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins
    • Dehal SS, Kupfer D. Evidence that the catechol 3,4-dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins. Cancer Res 1995;56:1283-1290
    • (1995) Cancer Res , vol.56 , pp. 1283-1290
    • Dehal, S.S.1    Kupfer, D.2
  • 48
    • 33846864233 scopus 로고    scopus 로고
    • Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
    • Eitrich T, Kless A, Druska C, et al. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007;47:92-103
    • (2007) J Chem Inf Model , vol.47 , pp. 92-103
    • Eitrich, T.1    Kless, A.2    Druska, C.3
  • 49
    • 71949083397 scopus 로고    scopus 로고
    • Classification of cytochrome P450 activities using machine learning methods
    • Hammann F, Gutmann H, Baumann U, et al. Classification of cytochrome P450 activities using machine learning methods. Mol Pharm 2009;6(6):19220-21926
    • (2009) Mol Pharm , vol.6 , Issue.6 , pp. 19220-21926
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3
  • 50
    • 0043234176 scopus 로고    scopus 로고
    • Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach
    • Korolev D, Balakin KV, Nikolsky Y, et al. Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J Med Chem 2003;46:3631-3643
    • (2003) J Med Chem , vol.46 , pp. 3631-3643
    • Korolev, D.1    Balakin, K.V.2    Nikolsky, Y.3
  • 51
    • 22144466197 scopus 로고    scopus 로고
    • A support vector machine approach to classify human cytochrome P450 3A4 inhibitors
    • Kriegl JM, Arnhold T, Beck B, Fox T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 2005;19:189-201
    • (2005) J Comput Aided Mol des , vol.19 , pp. 189-201
    • Kriegl, J.M.1    Arnhold, T.2    Beck, B.3    Fox, T.4
  • 52
    • 61449219789 scopus 로고    scopus 로고
    • Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach
    • Leong MK, Chen Y-M, Chen H-B, Chen P-H. Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Pharm Res 2009;26(4):987-1000
    • (2009) Pharm Res , vol.26 , Issue.4 , pp. 987-1000
    • Leong, M.K.1    Chen, Y.-M.2    Chen, H.-B.3    Chen, P.-H.4
  • 53
    • 34547679825 scopus 로고    scopus 로고
    • Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates
    • Terfloth L, Bienfait B, Gasteiger J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 2007;47:1688-1701
    • (2007) J Chem Inf Model , vol.47 , pp. 1688-1701
    • Terfloth, L.1    Bienfait, B.2    Gasteiger, J.3
  • 54
    • 61449101715 scopus 로고    scopus 로고
    • Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
    • Vasanthanathan P, Taboureau O, Oostenbrink C, et al. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009;37(3):658-664
    • (2009) Drug Metab Dispos , vol.37 , Issue.3 , pp. 658-664
    • Vasanthanathan, P.1    Taboureau, O.2    Oostenbrink, C.3
  • 55
    • 65549103878 scopus 로고    scopus 로고
    • Site of metabolism prediction for six biotransformations mediated by cytochromes P450
    • Zheng M, Luo X, Shen Q, et al. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 2009;25(10):1251-1258
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1251-1258
    • Zheng, M.1    Luo, X.2    Shen, Q.3
  • 56
    • 77953947264 scopus 로고    scopus 로고
    • Bryn Mawr College, Philadelphia, PA
    • Hopfinger AJ. eChemInfo. Bryn Mawr College, Philadelphia, PA; 2007
    • (2007) EChemInfo
    • Hopfinger, A.J.1
  • 57
    • 77953945535 scopus 로고    scopus 로고
    • Comparison of machine learning algorithms to predict ADME properties using chemical descriptors and molecular fingerprints
    • Bryn Mawr College Philadelphia PA
    • Klon AE. Comparison of machine learning algorithms to predict ADME properties using chemical descriptors and molecular fingerprints. eChemInfo. Bryn Mawr College, Philadelphia, PA; 2008
    • (2008) EChemInfo
    • Klon, A.E.1
  • 58
    • 77953944496 scopus 로고    scopus 로고
    • Why models fail Herman skolnik award lecture
    • San francisco, CA
    • Kubinbyi H. Why models fail. Herman Skolnik Award Lecture, ACS Meeting. San francisco, CA; 2006
    • (2006) ACS Meeting
    • Kubinbyi, H.1
  • 59
    • 77953937558 scopus 로고    scopus 로고
    • Organization for economic co-ordination and development. Available from [cited]
    • Organization for economic co-ordination and development. Available from: www.oecd.org [cited]
  • 60
    • 77953917826 scopus 로고    scopus 로고
    • OpenTox Project. Available from [Cited]
    • OpenTox Project. Available from: http://echeminfo.com/comty-randd [Cited]
  • 61
    • 4544385908 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • Kuramochi M, Karypis G. An efficient algorithm for discovering frequent subgraphs. IEEE Trans Knol Data Eng 2004;16(9):1038-1051
    • (2004) IEEE Trans Knol Data Eng , vol.16 , Issue.9 , pp. 1038-1051
    • Kuramochi, M.1    Karypis, G.2
  • 62
    • 52649109749 scopus 로고    scopus 로고
    • Classification models for hERG inhibitors by counter-propagation neural networks
    • Thai K-M, Ecker GF. Classification models for hERG inhibitors by counter-propagation neural networks. Chem Biol Drug Des 2008;72:279-289
    • (2008) Chem Biol Drug des , vol.72 , pp. 279-289
    • Thai, K.-M.1    Ecker, G.F.2
  • 63
    • 61949197836 scopus 로고    scopus 로고
    • Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands
    • Vasanthanathan P, Hritz J, Taboureau O, et al. Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J Chem Inf Model 2009;49:43-52
    • (2009) J Chem Inf Model , vol.49 , pp. 43-52
    • Vasanthanathan, P.1    Hritz, J.2    Taboureau, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.