메뉴 건너뛰기




Volumn 1, Issue 4, 2009, Pages 713-726

Novel approaches to neural and evolutionary computing in pharmaceutical formulation: Challenges and new possibilities

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOTECHNOLOGY; CLINICAL PRACTICE; DRUG DELIVERY SYSTEM; DRUG FORMULATION; DRUG RESEARCH; IN VITRO STUDY; IN VIVO STUDY; PRIORITY JOURNAL; REVIEW; ROOM TEMPERATURE; TEMPERATURE SENSITIVITY;

EID: 77953371536     PISSN: 17568919     EISSN: None     Source Type: Journal    
DOI: 10.4155/fmc.09.57     Document Type: Review
Times cited : (29)

References (93)
  • 9
    • 0028829043 scopus 로고
    • Artificial neural network analysis of a direct compression tabletting study
    • Turkoglu M, Ozarslan R, Sakr A. Artificial neural network analysis of a direct compression tabletting study. Eur. J. Pharm. Biopharm. 41, 315-322 (1995).
    • (1995) Eur. J. Pharm. Biopharm. , vol.41 , pp. 315-322
    • Turkoglu, M.1    Ozarslan, R.2    Sakr, A.3
  • 10
    • 0030317019 scopus 로고    scopus 로고
    • Pharmaceutical granulation and tablet formulation using neural networks
    • Kesavan JG, Peck GE. Pharmaceutical granulation and tablet formulation using neural networks. Pharm. Dev. Technol. 1, 391-404 (1996).
    • (1996) Pharm. Dev. Technol. , vol.1 , pp. 391-404
    • Kesavan, J.G.1    Peck, G.E.2
  • 11
    • 0002596177 scopus 로고    scopus 로고
    • Modelling and optimization of a tablet formulation using neural networks and genetic algorithms
    • Colbourn EA, Rowe RC. Modelling and optimization of a tablet formulation using neural networks and genetic algorithms. Pharm. Tech. Eur. 8(9), 46-55 (1996).
    • (1996) Pharm. Tech. Eur. , vol.8 , Issue.9 , pp. 46-55
    • Colbourn, E.A.1    Rowe, R.C.2
  • 12
    • 0033969555 scopus 로고    scopus 로고
    • Generating rules for tablet formulations
    • Rowe RC, Colbourn EA. Generating rules for tablet formulations. Pharm. Tech. Eur. 12(1), 24-27 (2000).
    • (2000) Pharm. Tech. Eur. , vol.12 , Issue.1 , pp. 24-27
    • Rowe, R.C.1    Colbourn, E.A.2
  • 13
    • 0031393965 scopus 로고    scopus 로고
    • Application of artificial neural networks (ANN) in the development of solid dosage forms
    • Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm. Dev. Technol. 2, 111-121 (1997).
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 111-121
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 14
    • 17344372177 scopus 로고    scopus 로고
    • Comparison of artificial neural networks (ANN) with classical modeling technologies using different experimental designs and data from a galenical study on a solid dosage form
    • Bourquin J. Schmidli H, van Hoogevest P, Leuenberger H. Comparison of artificial neural networks (ANN) with classical modeling technologies using different experimental designs and data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 6, 287-300 (1998).
    • (1998) Eur. J. Pharm. Sci. , vol.6 , pp. 287-300
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 15
    • 0032439097 scopus 로고    scopus 로고
    • Advantages of artificial neural networks (ANNs) as alternative modeling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form
    • Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Advantages of artificial neural networks (ANNs) as alternative modeling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 7, 5-16 (1998).
    • (1998) Eur. J. Pharm. Sci. , vol.7 , pp. 5-16
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 16
    • 0032443075 scopus 로고    scopus 로고
    • Pitfalls of artificial neural networks (ANN) modeling technique for data sets containing outlier measurements using a study of mixture properties of a direct compressed tablet dosage form
    • Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Pitfalls of artificial neural networks (ANN) modeling technique for data sets containing outlier measurements using a study of mixture properties of a direct compressed tablet dosage form. Eur. J. Pharm. Sci. 7, 17-28 (1998).
    • (1998) Eur. J. Pharm. Sci. , vol.7 , pp. 17-28
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 17
    • 20744444912 scopus 로고    scopus 로고
    • Optimization of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithm
    • Plumb AP, Rowe RC, York P, Brown M. Optimization of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J Pharm. Sci. 25, 395-405 (2005).
    • (2005) Eur. J Pharm. Sci. , vol.25 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Brown, M.4
  • 18
    • 33745859375 scopus 로고    scopus 로고
    • Comparison of neurofuzzy logic and neural networks in modeling experimental data of an immediate release tablet formulation
    • Shao Q, Rowe RC, York P. Comparison of neurofuzzy logic and neural networks in modeling experimental data of an immediate release tablet formulation. Eur. J. Pharm. Sci. 28, 394-404 (2006).
    • (2006) Eur. J. Pharm. Sci. , vol.28 , pp. 394-404
    • Shao, Q.1    Rowe, R.C.2    York, P.3
  • 19
    • 0032881878 scopus 로고    scopus 로고
    • Optimization of crushing strength and disintegration time of a high dose plant extract tablet by neural networks
    • Rocksloh K, Rapp F-R, Abu Abed S et al. Optimization of crushing strength and disintegration time of a high dose plant extract tablet by neural networks. Drug Dev. Ind. Pharm. 25, 1015-1025 (1999).
    • (1999) Drug Dev. Ind. Pharm. , vol.25 , pp. 1015-1025
    • Rocksloh, K.1    Rapp, F.-R.2    Abu Abed, S.3
  • 20
    • 77149144441 scopus 로고    scopus 로고
    • Drawing up and optimizing the formulation of Malumix tablets by an artificial intelligence system (CAD/Chem)
    • Do QM, Dang GV, Le NQ. Drawing up and optimizing the formulation of Malumix tablets by an artificial intelligence system (CAD/Chem). Tap Chi Hoa Hoc 6, 16-19 (2000).
    • (2000) Tap Chi Hoa Hoc , vol.6 , pp. 16-19
    • Do, Q.M.1    Dang, G.V.2    Le, N.Q.3
  • 21
    • 0035149710 scopus 로고    scopus 로고
    • Prediction of drug content and hardness of intact tablets using artificial neural networks and near-infrared spectroscopy
    • Chen U, Thosor S, Forbess R, Kemper, M, Rubinovitz RL, Shukla AJ. Prediction of drug content and hardness of intact tablets using artificial neural networks and near-infrared spectroscopy. Drug Dev. Ind. Pharm. 27, 623-631 (2001).
    • (2001) Drug Dev. Ind. Pharm. , vol.27 , pp. 623-631
    • Chen, U.1    Thosor, S.2    Forbess, R.3    Kemper, M.4    Rubinovitz, R.L.5    Shukla, A.J.6
  • 22
    • 0038302764 scopus 로고    scopus 로고
    • Comparison of neural networks and multiple linear regression as dissolution predictors
    • Sathe PM, Venitz J. Comparison of neural networks and multiple linear regression as dissolution predictors. Drug Dev. Ind. Pharm. 29, 349-355 (2003).
    • (2003) Drug Dev. Ind. Pharm. , vol.29 , pp. 349-355
    • Sathe, P.M.1    Venitz, J.2
  • 23
    • 8844260399 scopus 로고    scopus 로고
    • Use of artificial neural networks and genetic algorithms - Experiences from a tablet formulation
    • Lindberg NO, Colbourn EA. Use of artificial neural networks and genetic algorithms - experiences from a tablet formulation. Pharm. Tech. Eur. 16(5), 35-39 (2004).
    • (2004) Pharm. Tech. Eur. , vol.16 , Issue.5 , pp. 35-39
    • Lindberg, N.O.1    Colbourn, E.A.2
  • 24
    • 77149121380 scopus 로고    scopus 로고
    • Modelling properties of powders using artificial neural networks and regression: The case of limited data
    • Zolotariou R, Anwar J. Modelling properties of powders using artificial neural networks and regression: the case of limited data. J. Pharm. Pharmacol. 50(Suppl.), 190 (1998).
    • (1998) J. Pharm. Pharmacol. , vol.50 , Issue.SUPPL. , pp. 190
    • Zolotariou, R.1    Anwar, J.2
  • 25
    • 0037154040 scopus 로고    scopus 로고
    • Preparation, evaluation and optimization of rapidly disintegrating tablets
    • Sunada H, Bi Y. Preparation, evaluation and optimization of rapidly disintegrating tablets. Powder Technol. 122, 188-198 (2002).
    • (2002) Powder Technol , vol.122 , pp. 188-198
    • Sunada, H.1    Bi, Y.2
  • 26
    • 0344515269 scopus 로고    scopus 로고
    • Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN technology
    • Agatonovic-Kustrin S, Glass BD, Wisch MH, Alany RG. Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN technology. Pharm. Res. 20, 1760-1765 (2003).
    • (2003) Pharm. Res. , vol.20 , pp. 1760-1765
    • Agatonovic-Kustrin, S.1    Glass, B.D.2    Wisch, M.H.3    Alany, R.G.4
  • 27
    • 11244285009 scopus 로고    scopus 로고
    • Neural network as a decision support system in the development of pharmaceutical formulation - Focus on solid dispersions
    • Mendyk A, Jachowicz R. Neural network as a decision support system in the development of pharmaceutical formulation - focus on solid dispersions. Exp. Syst. App. 28, 285-294 (2005).
    • (2005) Exp. Syst. App. , vol.28 , pp. 285-294
    • Mendyk, A.1    Jachowicz, R.2
  • 28
    • 33751417554 scopus 로고    scopus 로고
    • Unified methodology of neural analysis in decision support systems built for pharmaceutical technology
    • Mendyk A, Jachowicz R. Unified methodology of neural analysis in decision support systems built for pharmaceutical technology. Exp. Syst. App. 32, 1124-1131 (2007).
    • (2007) Exp. Syst. App. , vol.32 , pp. 1124-1131
    • Mendyk, A.1    Jachowicz, R.2
  • 29
    • 0036741551 scopus 로고    scopus 로고
    • The effect of experimental design in the modeling of a tablet coating formulation using artificial neural networks
    • Plumb AP, Rowe RC, York P, Doherty C. The effect of experimental design in the modeling of a tablet coating formulation using artificial neural networks. Eur. J. Pharm. Sci. 16, 281-288 (2002).
    • (2002) Eur. J. Pharm. Sci. , vol.16 , pp. 281-288
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Doherty, C.4
  • 30
    • 12244261659 scopus 로고    scopus 로고
    • Effect of varying optimization parameters in optimization by guided evolutionary simulated annealing (GESA) using a tablet film coat on an example formulation
    • Plumb AP, Rowe RC, York P, Doherty C. Effect of varying optimization parameters in optimization by guided evolutionary simulated annealing (GESA) using a tablet film coat on an example formulation. Eur. J. Pharm. Sci. 18, 259-266 (2003).
    • (2003) Eur. J. Pharm. Sci. , vol.18 , pp. 259-266
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Doherty, C.4
  • 31
    • 0033407365 scopus 로고    scopus 로고
    • Neurofuzzy logic in tablet film coating formulation
    • Rowe RC, Woolgar CG. Neurofuzzy logic in tablet film coating formulation. Pharm. Sci. Technol. Today 2, 495-497 (1999).
    • (1999) Pharm. Sci. Technol. Today , vol.2 , pp. 495-497
    • Rowe, R.C.1    Woolgar, C.G.2
  • 32
    • 0025838017 scopus 로고
    • Application of neural computing in pharmaceutical product development
    • Hussain AS, Yu X, Johnson RD. Application of neural computing in pharmaceutical product development. Pharm. Res. 8, 1248-1252 (1991).
    • (1991) Pharm. Res. , vol.8 , pp. 1248-1252
    • Hussain, A.S.1    Yu, X.2    Johnson, R.D.3
  • 33
    • 0028365967 scopus 로고    scopus 로고
    • Application of neural computing in pharmaceutical product development: Computer aided formulation design
    • Hussain AS, Shivanand P, Johnson RD. Application of neural computing in pharmaceutical product development: computer aided formulation design. Drug. Dev. Ind. Pharm. 20, 1739-1752 (1996).
    • (1996) Drug. Dev. Ind. Pharm. , vol.20 , pp. 1739-1752
    • Hussain, A.S.1    Shivanand, P.2    Johnson, R.D.3
  • 34
    • 0030760466 scopus 로고    scopus 로고
    • Multiobjective simultaneous optimization technique based on an artificial neural network in sustained release formulations
    • Takahara J, Takayama K, Nagai T. Multiobjective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J. Control. Release 49, 11-20 (1997).
    • (1997) J. Control. Release , vol.49 , pp. 11-20
    • Takahara, J.1    Takayama, K.2    Nagai, T.3
  • 35
    • 0031390851 scopus 로고    scopus 로고
    • Relating formulation variables to in vitro dissolution using an artificial neural network
    • Ebube JK, McCall TW, Chen Y, Meyer MC. Relating formulation variables to in vitro dissolution using an artificial neural network. Pharm. Dev. Technol. 2, 225-232 (1997).
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 225-232
    • Ebube, J.K.1    McCall, T.W.2    Chen, Y.3    Meyer, M.C.4
  • 36
    • 0032918303 scopus 로고    scopus 로고
    • The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms
    • Chen Y, McCall TW, Baichwal AR, Meyer MC. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. J. Control. Release 29, 33-41 (1999).
    • (1999) J. Control. Release , vol.29 , pp. 33-41
    • Chen, Y.1    McCall, T.W.2    Baichwal, A.R.3    Meyer, M.C.4
  • 37
    • 0036360786 scopus 로고    scopus 로고
    • Comparison of four artificial neural network software programs used to predict the in vitro dissolution of controlled release tablets
    • Chen Y, Jiao T, McCall TW, Baichwal AR, Meyer MC. Comparison of four artificial neural network software programs used to predict the in vitro dissolution of controlled release tablets. Pharm. Dev. Technol. 7, 373-379 (2002).
    • (2002) Pharm. Dev. Technol. , vol.7 , pp. 373-379
    • Chen, Y.1    Jiao, T.2    McCall, T.W.3    Baichwal, A.R.4    Meyer, M.C.5
  • 38
  • 39
    • 0034632938 scopus 로고    scopus 로고
    • Formula optimization of theophylline controlled release tablet based on artificial neural networks
    • Takayama K, Morva A, Fujikawa M, Hattori Y, Obata Y, Nagai T. Formula optimization of theophylline controlled release tablet based on artificial neural networks. J. Control. Release 68, 175-186 (2000).
    • (2000) J. Control. Release , vol.68 , pp. 175-186
    • Takayama, K.1    Morva, A.2    Fujikawa, M.3    Hattori, Y.4    Obata, Y.5    Nagai, T.6
  • 40
    • 0041335436 scopus 로고    scopus 로고
    • Application of an artificial neural network in the design of sustained release dosage forms
    • Wei X-H, Wu J-J, Liang WQ. Application of an artificial neural network in the design of sustained release dosage forms. Acta Pharm. Sinica 36, 690-694 (2001).
    • (2001) Acta Pharm. Sinica , vol.36 , pp. 690-694
    • Wei, X.-H.1    Wu, J.-J.2    Liang, W.Q.3
  • 41
    • 38749143341 scopus 로고    scopus 로고
    • Modeling drug dissolution from controlled release products using genetic programming
    • Do DQ, Rowe RC, York P. Modeling drug dissolution from controlled release products using genetic programming. Int. J. Pharm. 351, 194-200 (2008).
    • (2008) Int. J. Pharm. , vol.351 , pp. 194-200
    • Do, D.Q.1    Rowe, R.C.2    York, P.3
  • 42
    • 27644472037 scopus 로고    scopus 로고
    • Applications of artificial neural networks to the design of sustained release matrix tablets
    • Sheng H, Wang P, Tu J-S, Yuan L, Pin Q-N. Applications of artificial neural networks to the design of sustained release matrix tablets. Chin. J. Pharm. 29, 352-354 (1998).
    • (1998) Chin. J. Pharm. , vol.29 , pp. 352-354
    • Sheng, H.1    Wang, P.2    Tu, J.-S.3    Yuan, L.4    Pin, Q.-N.5
  • 43
    • 0343924231 scopus 로고    scopus 로고
    • Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network
    • Zupancic Bozic D, Vrecar F, Kozjek F. Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network. Eur. J. Pharm. Sci. 5, 163-169 (1997).
    • (1997) Eur. J. Pharm. Sci. , vol.5 , pp. 163-169
    • Zupancic Bozic, D.1    Vrecar, F.2    Kozjek, F.3
  • 44
    • 0037151316 scopus 로고    scopus 로고
    • The application of a generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit RSPO as matrix substance
    • Ibric S, Jovanivic M, Djuric Z, Parjcic J, Solomun L. The application of a generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit RSPO as matrix substance. J. Control. Release 82, 213-222 (2002).
    • (2002) J. Control. Release , vol.82 , pp. 213-222
    • Ibric, S.1    Jovanivic, M.2    Djuric, Z.3    Parjcic, J.4    Solomun, L.5
  • 45
    • 0141576818 scopus 로고    scopus 로고
    • Artificial neural networks in the modeling and optimization of aspirin extended release tablets with Eudragit L100 as matrix substance
    • Ibric S, Jovanovic M, Djuric A et al. Artificial neural networks in the modeling and optimization of aspirin extended release tablets with Eudragit L100 as matrix substance. Pharm. Sci. Tech. 4, 62-70 (2003).
    • (2003) Pharm. Sci. Tech. , vol.4 , pp. 62-70
    • Ibric, S.1    Jovanovic, M.2    Djuric, A.3
  • 46
    • 0141652946 scopus 로고    scopus 로고
    • The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets
    • Leane MM, Cumming I, Corrigan O. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets. Pharm. Sci. Tech. 4, 218-229 (2003).
    • (2003) Pharm. Sci. Tech. , vol.4 , pp. 218-229
    • Leane, M.M.1    Cumming, I.2    Corrigan, O.3
  • 47
    • 0033993938 scopus 로고    scopus 로고
    • Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets
    • Wu T, Pao W, Chen J, Shang R. Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets. Drug Dev. Ind. Pharm. 26, 211-215 (2000).
    • (2000) Drug Dev. Ind. Pharm. , vol.26 , pp. 211-215
    • Wu, T.1    Pao, W.2    Chen, J.3    Shang, R.4
  • 48
    • 77149141937 scopus 로고    scopus 로고
    • Use of artificial networks to predict drug dissolution profiles and evaluation of network performance using similarity profile
    • Peh KK, Lim CP, Qwek SS, Khoti KH. Use of artificial networks to predict drug dissolution profiles and evaluation of network performance using similarity profile. Pharm. Res. 17, 1386-1398 (2000).
    • (2000) Pharm. Res. , vol.17 , pp. 1386-1398
    • Peh, K.K.1    Lim, C.P.2    Qwek, S.S.3    Khoti, K.H.4
  • 49
    • 0001579654 scopus 로고    scopus 로고
    • Prediction of drug dissolution profiles using artificial neural networks
    • Qwek SS, Lim CP, Peh KK. Prediction of drug dissolution profiles using artificial neural networks. Int. J. Comp. Intel. Applic. 1, 187-292 (2001).
    • (2001) Int. J. Comp. Intel. Applic. , vol.1 , pp. 187-292
    • Qwek, S.S.1    Lim, C.P.2    Peh, K.K.3
  • 50
    • 23044533713 scopus 로고    scopus 로고
    • Application of recurrent neural networks to prediction of drug dissolution profiles
    • Goh WY, Lim CP, Peh KK, Subari K. Application of recurrent neural networks to prediction of drug dissolution profiles. Neural Comput. 10, 311-317 (2002).
    • (2002) Neural Comput , vol.10 , pp. 311-317
    • Goh, W.Y.1    Lim, C.P.2    Peh, K.K.3    Subari, K.4
  • 51
    • 0033933889 scopus 로고    scopus 로고
    • Artificial neural network and simplex optimization for mixing of aqueous coated beads to obtain controlled release formulations
    • Vaithiyalingam S, Zaghloul AA, Reddes IK, Khan MA. Artificial neural network and simplex optimization for mixing of aqueous coated beads to obtain controlled release formulations. Pharm. Tech. 24(6), 60-72 (2000).
    • (2000) Pharm. Tech. , vol.24 , Issue.6 , pp. 60-72
    • Vaithiyalingam, S.1    Zaghloul, A.A.2    Reddes, I.K.3    Khan, M.A.4
  • 52
    • 0037006605 scopus 로고    scopus 로고
    • Optimization and characterization of controlled release multiparticulate beads formulated with a customized cellulose acetate butyrate dispersion
    • Vaithiyalingam S, Khan MA. Optimization and characterization of controlled release multiparticulate beads formulated with a customized cellulose acetate butyrate dispersion. Int. J. Pharm. 234, 179-193 (2002).
    • (2002) Int. J. Pharm. , vol.234 , pp. 179-193
    • Vaithiyalingam, S.1    Khan, M.A.2
  • 53
    • 18144437004 scopus 로고    scopus 로고
    • Tableting and stability evaluation of enteric-coated omeprazole pellets
    • Turkoglu M, Varol H, Celikok M. Tableting and stability evaluation of enteric-coated omeprazole pellets. Eur. J. Pharm. Biopharm. 57, 277-286 (2004).
    • (2004) Eur. J. Pharm. Biopharm. , vol.57 , pp. 277-286
    • Turkoglu, M.1    Varol, H.2    Celikok, M.3
  • 55
    • 0036893379 scopus 로고    scopus 로고
    • Textural profiling and statistical optimization of crosslinked calcium-alginate-pectinate-cellulose acetophthalate gelisphere matrices
    • Pillay V, Danckwerts MP. Textural profiling and statistical optimization of crosslinked calcium-alginate-pectinate-cellulose acetophthalate gelisphere matrices. J. Pharm. Sci. 91, 2559-2570 (2002).
    • (2002) J. Pharm. Sci. , vol.91 , pp. 2559-2570
    • Pillay, V.1    Danckwerts, M.P.2
  • 56
    • 0031440251 scopus 로고    scopus 로고
    • Multi-objective simultaneous optimization based on artificial neural network in a ketoprofen hydrogel formula containing σ-ethylmenthol as a percutaneous absorption enhancer
    • Takahara J, Takayama K, Isowa K, Nagai T. Multi-objective simultaneous optimization based on artificial neural network in a ketoprofen hydrogel formula containing σ-ethylmenthol as a percutaneous absorption enhancer. Int. J. Pharm. 158, 203-210 (1997).
    • (1997) Int. J. Pharm. , vol.158 , pp. 203-210
    • Takahara, J.1    Takayama, K.2    Isowa, K.3    Nagai, T.4
  • 57
    • 0032875802 scopus 로고    scopus 로고
    • Formula optimization based on artificial neural networks in transdermal drug delivery
    • Takayama K, Takahara J, Fujikawa M, Ichikawa H, Nagai T. Formula optimization based on artificial neural networks in transdermal drug delivery. J. Control. Release 62, 161-170 (1999).
    • (1999) J. Control. Release , vol.62 , pp. 161-170
    • Takayama, K.1    Takahara, J.2    Fujikawa, M.3    Ichikawa, H.4    Nagai, T.5
  • 58
    • 0034883684 scopus 로고    scopus 로고
    • Simultaneous optimization based on artificial neural networks in ketoprofen hydrogel formula containing S-ethyl-3-burylcyclohexanol as a percutaneous absorption enhancer
    • Wu P-C, Obata Y, Fijukawa M, Li CJ, Higashiyama K, Takayama K. Simultaneous optimization based on artificial neural networks in ketoprofen hydrogel formula containing S-ethyl-3-burylcyclohexanol as a percutaneous absorption enhancer. J. Pharm. Sci. 90, 1004-1014 (2001).
    • (2001) J. Pharm. Sci. , vol.90 , pp. 1004-1014
    • Wu, P.-C.1    Obata, Y.2    Fijukawa, M.3    Li, C.J.4    Higashiyama, K.5    Takayama, K.6
  • 59
    • 0032865057 scopus 로고    scopus 로고
    • Optimization of a vehicle mixture for the transdermal delivery of melatonin using artificial neural networks and response surface method
    • Kandimalla KK, Kanikkannon N, Singh M. Optimization of a vehicle mixture for the transdermal delivery of melatonin using artificial neural networks and response surface method. J. Control. Release 61, 71-82 (1999).
    • (1999) J. Control. Release , vol.61 , pp. 71-82
    • Kandimalla, K.K.1    Kanikkannon, N.2    Singh, M.3
  • 60
    • 20244390418 scopus 로고    scopus 로고
    • Lipophilic semisolid emulsion systems Viscoelastic behavior and prediction of physical stability by neural network modeling
    • Gasperlin M, Tusar L, Tusar M, Kristl J, Smid-Korbar J. Lipophilic semisolid emulsion systems. Viscoelastic behavior and prediction of physical stability by neural network modeling. Int. J. Pharm. 168, 243-254 (1998).
    • (1998) Int. J. Pharm. , vol.168 , pp. 243-254
    • Gasperlin, M.1    Tusar, L.2    Tusar, M.3    Kristl, J.4    Smid-Korbar, J.5
  • 61
    • 0342980886 scopus 로고    scopus 로고
    • Viscosity prediction of lipophilic semisolid emulsion systems by neural network modeling
    • Gasperlin M, Tusar L, Tusar M, Smid-Korbar J, Zupan J, Kristl J. Viscosity prediction of lipophilic semisolid emulsion systems by neural network modeling. Int. J. Pharm. 196, 37-50 (2000).
    • (2000) Int. J. Pharm. , vol.196 , pp. 37-50
    • Gasperlin, M.1    Tusar, L.2    Tusar, M.3    Smid-Korbar, J.4    Zupan, J.5    Kristl, J.6
  • 62
    • 77953448450 scopus 로고    scopus 로고
    • Optimization of the skin cream formulation containing Centella asiatica and Curcuma longa extracts
    • Nguyen LMT, Dang, GV, Le TS. Optimization of the skin cream formulation containing Centella asiatica and Curcuma longa extracts. Tap Chi Hoa Hoc 1, 15-18 (2001).
    • (2001) Tap Chi Hoa Hoc , vol.1 , pp. 15-18
    • Nguyen, L.M.T.1    Dang, G.V.2    Le, T.S.3
  • 63
    • 27744536387 scopus 로고    scopus 로고
    • Formulation optimization of photocrosslinked polyacrylic acid modified with 2-hydroxyethly methacrylate hydrogel as an adhesive for a dermatological patch
    • Onuki Y, Hoshi M, Okabe H, Fujikawa M, Morishita M, Takayama K. Formulation optimization of photocrosslinked polyacrylic acid modified with 2-hydroxyethly methacrylate hydrogel as an adhesive for a dermatological patch. J. Control. Release 108, 331-340 (2005).
    • (2005) J. Control. Release , vol.108 , pp. 331-340
    • Onuki, Y.1    Hoshi, M.2    Okabe, H.3    Fujikawa, M.4    Morishita, M.5    Takayama, K.6
  • 65
    • 0033008788 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict quaternary phase systems from limited experimental data
    • Alany RG, Agatonovic-Kustrin S, Rodes T, Tucker IG. Use of artificial neural networks to predict quaternary phase systems from limited experimental data. J. Pharm. Biomed. Anal. 19, 443-452 (1999).
    • (1999) J. Pharm. Biomed. Anal. , vol.19 , pp. 443-452
    • Alany, R.G.1    Agatonovic-Kustrin, S.2    Rodes, T.3    Tucker, I.G.4
  • 66
    • 0034873206 scopus 로고    scopus 로고
    • Role of genetic algorithms and artificial neural networks in predicting phase behavior of colloidal delivery systems
    • Agatonovic-Kustrin S, Alany RG. Role of genetic algorithms and artificial neural networks in predicting phase behavior of colloidal delivery systems. Pharm. Res. 18, 1049-1055 (2001).
    • (2001) Pharm. Res. , vol.18 , pp. 1049-1055
    • Agatonovic-Kustrin, S.1    Alany, R.G.2
  • 67
    • 48049087191 scopus 로고    scopus 로고
    • The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems
    • Djekic L, Ibric S, Primorac M. The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int. J. Pharm. 361, 41-46 (2008).
    • (2008) Int. J. Pharm. , vol.361 , pp. 41-46
    • Djekic, L.1    Ibric, S.2    Primorac, M.3
  • 68
    • 21644468970 scopus 로고    scopus 로고
    • Formulation optimization of Paclitaxel carried by PEGylated emulsions based on artificial neural network
    • Fan T, Takayama K, Hattori Y, Maitani Y. Formulation optimization of Paclitaxel carried by PEGylated emulsions based on artificial neural network. Pharm. Res. 21, 1692-1697 (2004).
    • (2004) Pharm. Res. , vol.21 , pp. 1692-1697
    • Fan, T.1    Takayama, K.2    Hattori, Y.3    Maitani, Y.4
  • 69
    • 48849091581 scopus 로고    scopus 로고
    • Determination of factors controlling the particle size in nanoemulsions using artificial neural networks
    • Amani A, York P, Chrystyn H, Clark BJ, Do DQ. Determination of factors controlling the particle size in nanoemulsions using artificial neural networks. Eur. J. Pharm. Sci. 35, 42-51 (2008).
    • (2008) Eur. J. Pharm. Sci. , vol.35 , pp. 42-51
    • Amani, A.1    York, P.2    Chrystyn, H.3    Clark, B.J.4    Do, D.Q.5
  • 70
    • 23144462228 scopus 로고    scopus 로고
    • Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes
    • Subramanian N, Yajnik A, Ramachandra Murthy RS. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes. AAPS Pharm. Sci. Tech. 5, 1-9 (2004).
    • (2004) AAPS Pharm. Sci. Tech. , vol.5 , pp. 1-9
    • Subramanian, N.1    Yajnik, A.2    Ramachandra Murthy, R.S.3
  • 71
    • 0033833098 scopus 로고    scopus 로고
    • Modeling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks
    • Yuksel N, Turkoglu M, Baykara T. Modeling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks. J. Microencapsul. 17, 541-551 (2000).
    • (2000) J. Microencapsul. , vol.17 , pp. 541-551
    • Yuksel, N.1    Turkoglu, M.2    Baykara, T.3
  • 72
    • 0037768709 scopus 로고    scopus 로고
    • Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate
    • Surini S, Akiyama H, Morishita M, Nagai T, Takayama K. Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J. Control. Release 90, 291-301 (2003).
    • (2003) J. Control. Release , vol.90 , pp. 291-301
    • Surini, S.1    Akiyama, H.2    Morishita, M.3    Nagai, T.4    Takayama, K.5
  • 73
    • 0842267699 scopus 로고    scopus 로고
    • An alternative approach based on artificial neural networks to study controlled drug release
    • Reis MAA, Sinisterra RO, Belchior JC. An alternative approach based on artificial neural networks to study controlled drug release. J. Pharm. Sci. 93, 418-428 (2004).
    • (2004) J. Pharm. Sci. , vol.93 , pp. 418-428
    • Reis, M.A.A.1    Sinisterra, R.O.2    Belchior, J.C.3
  • 74
    • 4143106637 scopus 로고    scopus 로고
    • Neural networkbased prediction and optimization of estradiol release from ethylene-vinyl acetate membranes
    • Simon L, Fernandes M. Neural networkbased prediction and optimization of estradiol release from ethylene-vinyl acetate membranes. Comp. Chem. Eng. 28, 2407-2419 (2004).
    • (2004) Comp. Chem. Eng. , vol.28 , pp. 2407-2419
    • Simon, L.1    Fernandes, M.2
  • 76
    • 0342645307 scopus 로고
    • Comparison of four different neural network training algorithms in modeling the fluidized bed granulation process
    • Murtoniemi E, Merkku P, Yliruusi J. Comparison of four different neural network training algorithms in modeling the fluidized bed granulation process. Lab. Microcomput. 12, 69-76 (1993).
    • (1993) Lab. Microcomput. , vol.12 , pp. 69-76
    • Murtoniemi, E.1    Merkku, P.2    Yliruusi, J.3
  • 77
    • 0028291936 scopus 로고
    • The advantages by the use of neural networks in modeling the fluidized bed granulation process
    • Murtoniemi E, Yliruusi J, Kinnunen P, Merkku P, Leiviska K. The advantages by the use of neural networks in modeling the fluidized bed granulation process. Int. J. Pharm. 108, 155-164 (1994).
    • (1994) Int. J. Pharm. , vol.108 , pp. 155-164
    • Murtoniemi, E.1    Yliruusi, J.2    Kinnunen, P.3    Merkku, P.4    Leiviska, K.5
  • 78
    • 0028145805 scopus 로고
    • Effect of neural network topology and training end point in modeling the fluidized bed granulation process
    • Mertoniemi E, Merkky P, Kinnunen P, Leiviska K, Ylirussi J. Effect of neural network topology and training end point in modeling the fluidized bed granulation process. Int. J. Pharm. 110, 101-108 (1994).
    • (1994) Int. J. Pharm. , vol.110 , pp. 101-108
    • Mertoniemi, E.1    Merkky, P.2    Kinnunen, P.3    Leiviska, K.4    Ylirussi, J.5
  • 79
    • 0035820060 scopus 로고    scopus 로고
    • Modeling the droplet deposition behavior on a single particle in fluidized bed spray granulation process
    • Panda RC, Zank J, Martin H. Modeling the droplet deposition behavior on a single particle in fluidized bed spray granulation process. Powder Technol. 115, 51-57 (2001).
    • (2001) Powder Technol. , vol.115 , pp. 51-57
    • Panda, R.C.1    Zank, J.2    Martin, H.3
  • 80
    • 0035897291 scopus 로고    scopus 로고
    • In-line moisture measurements during granulation with a four wavelength near-infrared sensor: An evaluation of process-related variables and a development non-linear calibration model
    • Rantanen J, Rasanen E, Antikainen O, Mannermaa J-P, Yliruusi J. In-line moisture measurements during granulation with a four wavelength near-infrared sensor: an evaluation of process-related variables and a development non-linear calibration model. Chemometric Intel. Lab. Syst. 56, 51-58 (2001).
    • (2001) Chemometric Intel. Lab. Syst. , vol.56 , pp. 51-58
    • Rantanen, J.1    Rasanen, E.2    Antikainen, O.3    Mannermaa, J.-P.4    Yliruusi, J.5
  • 81
    • 49249097199 scopus 로고    scopus 로고
    • Data mining of fractured experimental data using neurofuzzy logic - Discovering and integrating knowledge hidden in multiple formulation databases for a fluid-bed granulation process
    • Shao Q, Rowe RC, York P. Data mining of fractured experimental data using neurofuzzy logic - discovering and integrating knowledge hidden in multiple formulation databases for a fluid-bed granulation process. J. Pharm. Sci. 97, 2091-2101 (2008).
    • (2008) J. Pharm. Sci. , vol.97 , pp. 2091-2101
    • Shao, Q.1    Rowe, R.C.2    York, P.3
  • 82
    • 0030787570 scopus 로고    scopus 로고
    • Scale-up of agitation fludized bed granulation by neural networks
    • Watano S, Takashima H, Miyanami K. Scale-up of agitation fludized bed granulation by neural networks. Chem. Pharm. Bull. 45, 1193-1197 (1996).
    • (1996) Chem. Pharm. Bull. , vol.45 , pp. 1193-1197
    • Watano, S.1    Takashima, H.2    Miyanami, K.3
  • 83
    • 0031081680 scopus 로고    scopus 로고
    • Application of a neural network to granulation scale-up
    • Watano S, Sato Y, Miyanami K. Application of a neural network to granulation scale-up. Powder Technol. 90, 153-159 (1997).
    • (1997) Powder Technol. , vol.90 , pp. 153-159
    • Watano, S.1    Sato, Y.2    Miyanami, K.3
  • 84
    • 0030894741 scopus 로고    scopus 로고
    • Instrumentation of a roll compactor and the evaluation of the parameter setting by neural networks
    • Inghelbrecht S, Remon J-P, Fernandes de Aguiar P et al. Instrumentation of a roll compactor and the evaluation of the parameter setting by neural networks. Int. J. Pharm. 148, 103-115 (1997).
    • (1997) Int. J. Pharm. , vol.148 , pp. 103-115
    • Inghelbrecht, S.1    Remon, J.-P.2    Fernandes De Aguiar, P.3
  • 85
    • 0032711133 scopus 로고    scopus 로고
    • Modeling of a roller-compaction process using neural networks and genetic algorithms
    • Turkoglu M, Aydin I, Murray M, Sakr A. Modeling of a roller-compaction process using neural networks and genetic algorithms. Eur. J. Pharm. Biopharm. 48, 239-245 (1999).
    • (1999) Eur. J. Pharm. Biopharm. , vol.48 , pp. 239-245
    • Turkoglu, M.1    Aydin, I.2    Murray, M.3    Sakr, A.4
  • 86
    • 38349016331 scopus 로고    scopus 로고
    • Using intelligent software to predict the effects of formulation and processing parameters on roller compaction
    • Mansa R, Bridson RH, Greenwood RW, Barker H, Seville JPK. Using intelligent software to predict the effects of formulation and processing parameters on roller compaction. Powder Technol. 181, 217-225 (2008).
    • (2008) Powder Technol. , vol.181 , pp. 217-225
    • Mansa, R.1    Bridson, R.H.2    Greenwood, R.W.3    Barker, H.4    Seville, J.P.K.5
  • 87
    • 0034842957 scopus 로고    scopus 로고
    • Predictive statistical process controls - A neural network approach to maximizing tablet yield
    • Walsh DE, Zaccori N. Predictive statistical process controls - a neural network approach to maximizing tablet yield. Pharm. Tech. Eur. 13(9), 46-53 (2001).
    • (2001) Pharm. Tech. Eur. , vol.13 , Issue.9 , pp. 46-53
    • Walsh, D.E.1    Zaccori, N.2
  • 88
    • 0032960016 scopus 로고    scopus 로고
    • Artificial neural networks applied to the in vitro-in vivo correlation of an extendedrelease formulation: Initial trials and experience
    • Dowell JA, Hussain A, Devone J, Young D. Artificial neural networks applied to the in vitro-in vivo correlation of an extendedrelease formulation: initial trials and experience. J. Pharm. Sci. 88, 154-160 (1999).
    • (1999) J. Pharm. Sci. , vol.88 , pp. 154-160
    • Dowell, J.A.1    Hussain, A.2    Devone, J.3    Young, D.4
  • 89
    • 33847193134 scopus 로고    scopus 로고
    • An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation
    • Parojcic J, Ibric S, Dhuric Z, Jovanivic M, Corrigan OI. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation. Eur. Pharm. J. 30, 264-272 (2007).
    • (2007) Eur. Pharm. J. , vol.30 , pp. 264-272
    • Parojcic, J.1    Ibric, S.2    Dhuric, Z.3    Jovanivic, M.4    Corrigan, O.I.5
  • 90
    • 36849091617 scopus 로고    scopus 로고
    • Evaluation of an in vitroin vivo correlation for nebulizer delivery using artificial neural networks
    • de Matas M, Shao Q, Silkstone VL, Chrystyn H. Evaluation of an in vitroin vivo correlation for nebulizer delivery using artificial neural networks . J. Pharm. Sci. 96, 3293-3303 (2007).
    • (2007) J. Pharm. Sci. , vol.96 , pp. 3293-3303
    • De Matas, M.1    Shao, Q.2    Silkstone, V.L.3    Chrystyn, H.4
  • 91
    • 36849030787 scopus 로고    scopus 로고
    • Evaluation of in vitro-in vivo correlations for dry powder inhaler delivery using artificial neural networks
    • de Matas M, Shao Q, Richardson C, Chrystyn H. Evaluation of in vitro-in vivo correlations for dry powder inhaler delivery using artificial neural networks. Eur. J. Pharm. Sci. 33, 80-90 (2008).
    • (2008) Eur. J. Pharm. Sci. , vol.33 , pp. 80-90
    • De Matas, M.1    Shao, Q.2    Richardson, C.3    Chrystyn, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.