메뉴 건너뛰기




Volumn 28, Issue 5, 2006, Pages 394-404

Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation

Author keywords

Models; Neural networks; Neurofuzzy logic; Rules; Tablet formulation

Indexed keywords

ARTICLE; COMPUTER PROGRAM; DATA ANALYSIS; DATA BASE; DISSOLUTION; DRUG RELEASE; EXPERIMENT; NERVE CELL NETWORK; PRIORITY JOURNAL; STATISTICAL MODEL; TABLET FORMULATION; TENSILE STRENGTH;

EID: 33745859375     PISSN: 09280987     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejps.2006.04.007     Document Type: Article
Times cited : (92)

References (30)
  • 1
    • 33745840376 scopus 로고    scopus 로고
    • Intelligensys Ltd., UK
    • Anon. FormRules2.0 Manual (2002), Intelligensys Ltd., UK
    • (2002) FormRules2.0 Manual
  • 3
    • 33745850349 scopus 로고    scopus 로고
    • Bossley, K.M, 1997. Neurofuzzy modelling approaches in system identification. Ph.D. Thesis in the Faculty of Engineering and Applied Science. Department of Electronics and Computer Science, University of Southampton.
  • 4
    • 0031393965 scopus 로고    scopus 로고
    • Application of artificial neural networks (ANN) in the development of solid dosage forms
    • Bourquin J., Schmidli H., Hoogevest P.V., and Leuenberger H. Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm. Dev. Technol. 2 (1997) 111-121
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 111-121
    • Bourquin, J.1    Schmidli, H.2    Hoogevest, P.V.3    Leuenberger, H.4
  • 5
    • 17344372177 scopus 로고    scopus 로고
    • Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form
    • Bourquin J., Schmidli H., Hoogevest P.V., and Leuenberger H. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 6 (1998) 287-300
    • (1998) Eur. J. Pharm. Sci. , vol.6 , pp. 287-300
    • Bourquin, J.1    Schmidli, H.2    Hoogevest, P.V.3    Leuenberger, H.4
  • 6
    • 0032443075 scopus 로고    scopus 로고
    • Pitfalls of artificial neural networks (ANN) modelling technique for data sets containing outlier measurements suing a study on mixture properties of a direct compressed dosage from
    • Bourquin J., Schmidli H., Hoogevest P.V., and Leuenberger H. Pitfalls of artificial neural networks (ANN) modelling technique for data sets containing outlier measurements suing a study on mixture properties of a direct compressed dosage from. Eur. J. Pharm. Sci. 7 (1998) 17-28
    • (1998) Eur. J. Pharm. Sci. , vol.7 , pp. 17-28
    • Bourquin, J.1    Schmidli, H.2    Hoogevest, P.V.3    Leuenberger, H.4
  • 7
    • 0032439097 scopus 로고    scopus 로고
    • Advantages of artificial neural networks (ANN) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form
    • Bourquin J., Schmidli H., Hoogevest P.V., and Leuenberger H. Advantages of artificial neural networks (ANN) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci. 7 (1998) 5-16
    • (1998) Eur. J. Pharm. Sci. , vol.7 , pp. 5-16
    • Bourquin, J.1    Schmidli, H.2    Hoogevest, P.V.3    Leuenberger, H.4
  • 8
    • 0001031887 scopus 로고
    • An adaptive training algorithms for backpropagation networks
    • Chan L.-W., and Fallside F. An adaptive training algorithms for backpropagation networks. Comput. Speech Lang. 2 (1987) 205-218
    • (1987) Comput. Speech Lang. , vol.2 , pp. 205-218
    • Chan, L.-W.1    Fallside, F.2
  • 9
    • 0032918303 scopus 로고    scopus 로고
    • The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms
    • Chen Y.X., McCall T.W., Baichwal A.R., and Meyer M.C. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. J. Control. Release 59 (1999) 33-41
    • (1999) J. Control. Release , vol.59 , pp. 33-41
    • Chen, Y.X.1    McCall, T.W.2    Baichwal, A.R.3    Meyer, M.C.4
  • 10
    • 33745855387 scopus 로고    scopus 로고
    • Neural computing: enable intelligent formulations
    • Colbourn E. Neural computing: enable intelligent formulations. Pharm. Technol. Suppl. (2003) 16-20
    • (2003) Pharm. Technol. Suppl. , pp. 16-20
    • Colbourn, E.1
  • 12
    • 33745867868 scopus 로고    scopus 로고
    • Fahlman, S.E., 1988. An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162.
  • 13
    • 33745871493 scopus 로고    scopus 로고
    • Gunn, S.R., Brown, M., Bossley, K.M., 1997. Network Performance Assessment for Neurofuzzy Data Modelling. A Internal Report from the Department of Electronics and Computer Science. University of Southampton, UK.
  • 17
    • 0342645307 scopus 로고
    • Comparison of four different neural network training algorithms in modelling the fluidised bed granulation process
    • Murtoniemi E., Merkku P., and Yliruusi J. Comparison of four different neural network training algorithms in modelling the fluidised bed granulation process. Lab. Microcomput. 12 (1993) 69-76
    • (1993) Lab. Microcomput. , vol.12 , pp. 69-76
    • Murtoniemi, E.1    Merkku, P.2    Yliruusi, J.3
  • 18
    • 0001623515 scopus 로고    scopus 로고
    • Neuro-fuzzy systems for function approximation
    • Nauck D., and Kruse R. Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101 (1999) 261-271
    • (1999) Fuzzy Sets Syst. , vol.101 , pp. 261-271
    • Nauck, D.1    Kruse, R.2
  • 19
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., and Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154 (2002) 135-150
    • (2002) Ecol. Model. , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 20
    • 0001860544 scopus 로고    scopus 로고
    • Aspects of training of an artificial neural network for the modelling of tablet coating formulations
    • Plumb A.P., Rowe R.C., York P., and Doherty C. Aspects of training of an artificial neural network for the modelling of tablet coating formulations. J. Pharm. Pharmacol. 51 Suppl. (1999) 92
    • (1999) J. Pharm. Pharmacol. , vol.51 , Issue.SUPPL , pp. 92
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Doherty, C.4
  • 21
    • 20744444912 scopus 로고    scopus 로고
    • Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
    • Plumb A.P., Rowe R.C., York P., and Brown M. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J. Pharm. Sci. 25 (2005) 395-405
    • (2005) Eur. J. Pharm. Sci. , vol.25 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Brown, M.4
  • 23
    • 33745841053 scopus 로고    scopus 로고
    • Riedmiller, M., Braun, H., 1992. RPROP-a fast adaptive learning algorithm. Technical Report. University Karlsruhe.
  • 24
    • 0033407365 scopus 로고    scopus 로고
    • Neuro-fuzzy logic in tablet film coating formulation
    • Rowe R.C., and Woolgar C.G. Neuro-fuzzy logic in tablet film coating formulation. Pharm. Sci. Tech. Today 2 (1999) 495-497
    • (1999) Pharm. Sci. Tech. Today , vol.2 , pp. 495-497
    • Rowe, R.C.1    Woolgar, C.G.2
  • 25
    • 0033969555 scopus 로고    scopus 로고
    • Generating rules for tablet formulation
    • Rowe R.C., and Colbourn E.A. Generating rules for tablet formulation. Pharm. Tech. Eur. 12 (2000) 24-27
    • (2000) Pharm. Tech. Eur. , vol.12 , pp. 24-27
    • Rowe, R.C.1    Colbourn, E.A.2
  • 26
    • 0034632938 scopus 로고    scopus 로고
    • Formula optimization of theophylline controlled-release tablet based on artificial neural networks
    • Takayama K., Morva A., Fujikawa M., Hattori Y., Obata Y., and Nagai T. Formula optimization of theophylline controlled-release tablet based on artificial neural networks. J. Control. Release 68 (2000) 175-186
    • (2000) J. Control. Release , vol.68 , pp. 175-186
    • Takayama, K.1    Morva, A.2    Fujikawa, M.3    Hattori, Y.4    Obata, Y.5    Nagai, T.6
  • 28
    • 0028829043 scopus 로고
    • Artificial neural network analysis of a direct compression tabletting study
    • Turkoglu M., Ozarslan R., and Sakr A. Artificial neural network analysis of a direct compression tabletting study. Eur. J. Pharm. Biopharm. 41 (1995) 315-322
    • (1995) Eur. J. Pharm. Biopharm. , vol.41 , pp. 315-322
    • Turkoglu, M.1    Ozarslan, R.2    Sakr, A.3
  • 29
    • 0033933889 scopus 로고    scopus 로고
    • Artificial neural network and simplex optimisation for mixing of aqueous-coated beads to obtain controlled-release formulations
    • Vaithiyalingam S., Zaghloul A.A., Reddy I.K., and Khan M.A. Artificial neural network and simplex optimisation for mixing of aqueous-coated beads to obtain controlled-release formulations. Pharm. Tech. 24 (2000) 60-72
    • (2000) Pharm. Tech. , vol.24 , pp. 60-72
    • Vaithiyalingam, S.1    Zaghloul, A.A.2    Reddy, I.K.3    Khan, M.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.