메뉴 건너뛰기




Volumn 28, Issue 5, 2007, Pages 631-643

Unifying multi-class AdaBoost algorithms with binary base learners under the margin framework

Author keywords

AdaBoost; Margin theory; Multi class classification problem

Indexed keywords

ALGORITHMS; BINARY SEQUENCES; DATA REDUCTION; DATABASE SYSTEMS; GRADIENT METHODS;

EID: 33846109957     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2006.11.001     Document Type: Article
Times cited : (10)

References (20)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: a unifying approach for margin classifiers
    • Allwein E.L., Schapire R.E., and Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1 (2000) 113-141
    • (2000) J. Mach. Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 33846103938 scopus 로고    scopus 로고
    • Blake, C., Merz, C., 1998. UCI repository of machine learning databases.
  • 3
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L. Prediction games and arcing algorithms. Neural Comput. 11 7 (1999) 1493-1517
    • (1999) Neural Comput. , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 4
    • 0010099436 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Stanford University, CA, USA
    • Crammer K., and Singer Y. On the learnability and design of output codes for multiclass problems. Proc. 13th Annual Conf. Computational Learning Theory (2000), Stanford University, CA, USA 35-46
    • (2000) Proc. 13th Annual Conf. Computational Learning Theory , pp. 35-46
    • Crammer, K.1    Singer, Y.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 2 (2000) 139-157
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 6
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., and Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artificial Intell. Res. 2 (1995) 263-286
    • (1995) J. Artificial Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 1 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J. Greedy function approximation: a gradient boosting machine. Ann. Statist. 29 5 (2001) 1189-1232
    • (2001) Ann. Statist. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 2 (2000) 337-407
    • (2000) Ann. Statist. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0031638384 scopus 로고    scopus 로고
    • Grove, A.J., Schuurmans, D., 1998. Boosting in the limit: maximizing the margin of learned ensembles. In: Proc. 15th Natl. Conf. on Artificial Intelligence, Madison, WI, USA, pp. 692-699.
  • 11
    • 0033280008 scopus 로고    scopus 로고
    • Guruswami, V., Sahai, A., 1999. Multiclass learning, boosting, and error-correcting codes. In: Proc. 12th Annual Conf. Computational Learning Theory, Santa Cruz, California, pp. 145-155.
  • 13
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • Scholkopf B., Smola A., Bartlett P., and Schuurmans D. (Eds), MIT Press, Cambridge, MA, USA
    • Mason L., Bartlett J., Baxter P., and Frean M. Functional gradient techniques for combining hypotheses. In: Scholkopf B., Smola A., Bartlett P., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA, USA 221-247
    • (2000) Advances in Large Margin Classifiers , pp. 221-247
    • Mason, L.1    Bartlett, J.2    Baxter, P.3    Frean, M.4
  • 15
    • 0030370417 scopus 로고    scopus 로고
    • Quinlan, J., 1996. Bagging, boosting, and C4.5. In: Proc. 13th Natl. Conf. Artificial Intelligence and 8th Innovative Applications of Artificial Intelligence Conf., Portland, OR, USA, pp. 725-730.
  • 16
    • 47849088969 scopus 로고    scopus 로고
    • The dynamics of AdaBoost: cyclic behavior and convergence of margins
    • Rudin C., Daubechies I., and Schapire R.E. The dynamics of AdaBoost: cyclic behavior and convergence of margins. J. Mach. Learn. Res. 5 (2004) 1557-1595
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1557-1595
    • Rudin, C.1    Daubechies, I.2    Schapire, R.E.3
  • 17
    • 0000040021 scopus 로고    scopus 로고
    • Using output codes to boost multiclass learning problems
    • Nashville, TN, USA
    • Schapire R.E. Using output codes to boost multiclass learning problems. Proc. 14th Intl. Conf. Machine Learning (1997), Nashville, TN, USA 313-321
    • (1997) Proc. 14th Intl. Conf. Machine Learning , pp. 313-321
    • Schapire, R.E.1
  • 18
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37 3 (1999) 297-336
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 19
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 5 (1998) 1651-1686
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 20
    • 33846114764 scopus 로고    scopus 로고
    • Sun, Y., Todorovic, S., Li, J. Reducing the overfitting of AdaBoost by controlling its data distribution skewness. Int. J. Pattern Recog. Artificial Intell., in press.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.