-
1
-
-
24044435942
-
Reducing multiclass to binary: a unifying approach for margin classifiers
-
Allwein E.L., Schapire R.E., and Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1 (2000) 113-141
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
2
-
-
33846103938
-
-
Blake, C., Merz, C., 1998. UCI repository of machine learning databases.
-
-
-
-
3
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman L. Prediction games and arcing algorithms. Neural Comput. 11 7 (1999) 1493-1517
-
(1999)
Neural Comput.
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
4
-
-
0010099436
-
On the learnability and design of output codes for multiclass problems
-
Stanford University, CA, USA
-
Crammer K., and Singer Y. On the learnability and design of output codes for multiclass problems. Proc. 13th Annual Conf. Computational Learning Theory (2000), Stanford University, CA, USA 35-46
-
(2000)
Proc. 13th Annual Conf. Computational Learning Theory
, pp. 35-46
-
-
Crammer, K.1
Singer, Y.2
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 2 (2000) 139-157
-
(2000)
Mach. Learn.
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
6
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
Dietterich T.G., and Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artificial Intell. Res. 2 (1995) 263-286
-
(1995)
J. Artificial Intell. Res.
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
7
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 1 (1997) 119-139
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
8
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman J. Greedy function approximation: a gradient boosting machine. Ann. Statist. 29 5 (2001) 1189-1232
-
(2001)
Ann. Statist.
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.1
-
9
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 2 (2000) 337-407
-
(2000)
Ann. Statist.
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
0031638384
-
-
Grove, A.J., Schuurmans, D., 1998. Boosting in the limit: maximizing the margin of learned ensembles. In: Proc. 15th Natl. Conf. on Artificial Intelligence, Madison, WI, USA, pp. 692-699.
-
-
-
-
11
-
-
0033280008
-
-
Guruswami, V., Sahai, A., 1999. Multiclass learning, boosting, and error-correcting codes. In: Proc. 12th Annual Conf. Computational Learning Theory, Santa Cruz, California, pp. 145-155.
-
-
-
-
12
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun Y., Boser B., Denker J.S., Hendersen D., Howard R., Hubbard W., and Jackel L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1 4 (1989) 541-551
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Hendersen, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.D.7
-
13
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
Scholkopf B., Smola A., Bartlett P., and Schuurmans D. (Eds), MIT Press, Cambridge, MA, USA
-
Mason L., Bartlett J., Baxter P., and Frean M. Functional gradient techniques for combining hypotheses. In: Scholkopf B., Smola A., Bartlett P., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA, USA 221-247
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Bartlett, J.2
Baxter, P.3
Frean, M.4
-
15
-
-
0030370417
-
-
Quinlan, J., 1996. Bagging, boosting, and C4.5. In: Proc. 13th Natl. Conf. Artificial Intelligence and 8th Innovative Applications of Artificial Intelligence Conf., Portland, OR, USA, pp. 725-730.
-
-
-
-
16
-
-
47849088969
-
The dynamics of AdaBoost: cyclic behavior and convergence of margins
-
Rudin C., Daubechies I., and Schapire R.E. The dynamics of AdaBoost: cyclic behavior and convergence of margins. J. Mach. Learn. Res. 5 (2004) 1557-1595
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1557-1595
-
-
Rudin, C.1
Daubechies, I.2
Schapire, R.E.3
-
17
-
-
0000040021
-
Using output codes to boost multiclass learning problems
-
Nashville, TN, USA
-
Schapire R.E. Using output codes to boost multiclass learning problems. Proc. 14th Intl. Conf. Machine Learning (1997), Nashville, TN, USA 313-321
-
(1997)
Proc. 14th Intl. Conf. Machine Learning
, pp. 313-321
-
-
Schapire, R.E.1
-
18
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire R., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37 3 (1999) 297-336
-
(1999)
Mach. Learn.
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.1
Singer, Y.2
-
19
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire R.E., Freund Y., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 5 (1998) 1651-1686
-
(1998)
Ann. Statist.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
20
-
-
33846114764
-
-
Sun, Y., Todorovic, S., Li, J. Reducing the overfitting of AdaBoost by controlling its data distribution skewness. Int. J. Pattern Recog. Artificial Intell., in press.
-
-
-
|