메뉴 건너뛰기




Volumn 78, Issue 1-2, 2010, Pages 251-285

A comparison of pruning criteria for probability trees

Author keywords

Decision trees; Probability estimation; Pruning; Randomization tests

Indexed keywords

CLASS PROBABILITIES; CLASS SKEW; CLASSIFICATION ACCURACY; DATA CHARACTERISTICS; EXPERIMENTAL STUDIES; PROBABILITY ESTIMATE; PROBABILITY ESTIMATION; PROBABILITY TREES; PRUNING; RANDOMIZATION TESTS; RELATIVE PERFORMANCE;

EID: 77952428525     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5147-1     Document Type: Article
Times cited : (12)

References (43)
  • 2
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first-order logical decision trees
    • PII S0004370298000344
    • Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1-2), 285-297. (Pubitemid 128387397)
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 285-297
    • Blockeel, H.1    De Raedt, L.2
  • 4
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 6
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Chickering,D.,&Heckerman,D.(1997). Efficientapproximationsforthemarginallikelih oodofBayesiannetworkswithhiddenvariables.MachineLearning,29(2-3),181-212. (Pubitemid127510038)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 181-212
    • Chickering, D.M.1    Heckerman, D.2
  • 9
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • In A. Prieditis & S. Russell (Eds.), San Mateo: Morgan Kaufmann
    • Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the 12th international conference on machine learning (pp. 194-202). San Mateo: Morgan Kaufmann.
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 20
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • In M. Jordan (Ed.), Dordrecht: Kluwer Academic
    • Friedman, N., & Goldszmidt, M. (1998). Learning Bayesian networks with local structure. In M. Jordan (Ed.), Learning in graphical models (pp. 421-459). Dordrecht: Kluwer Academic.
    • (1998) Learning in Graphical Models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 21
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • In S. Džeroski & N. Lavrač (Eds.), Berlin: Springer
    • Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 307-334). Berlin: Springer.
    • (2001) Relational Data Mining , pp. 307-334
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 25
    • 0033907286 scopus 로고    scopus 로고
    • Multiple comparisons in induction algorithms
    • Jensen, D., & Cohen, P. (2000). Multiple comparisons in induction algorithms. Machine Learning, 38(3), 309-338.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 309-338
    • Jensen, D.1    Cohen, P.2
  • 36
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-216.
    • (2003) Machine Learning , vol.52 , pp. 199-216
    • Provost, F.1    Domingos, P.2
  • 38
    • 0024627518 scopus 로고
    • Inferring decision trees using the Minimum Description Length principle
    • Quinlan, J., & Rivest, R. (1989). Inferring decision trees using the Minimum Description Length principle. Information and Computation, 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.1    Rivest, R.2
  • 39
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 40
    • 33748272679 scopus 로고    scopus 로고
    • First order random forests: Learning relational classifiers with complex aggregates
    • DOI 10.1007/s10994-006-8713-9, Special ILP Mega-Issue: ILP-2003 and ILP-2004; ILP-2003 Guest Editors: Tamas Horvath and Akihiro Yamamoto; ILP-2004 Guest Editors: Rui Camacho, Ross King and Ashwin Srinivasan
    • Van Assche, A., Vens, C., Blockeel, H., & Džeroski, S. (2006). First order random forests: learning relational classifiers with complex aggregates. Machine Learning, 64(1-3), 149-182. (Pubitemid 44320250)
    • (2006) Machine Learning , vol.64 , Issue.1-3 , pp. 149-182
    • Van Assche, A.1    Vens, C.2    Blockeel, H.3    Dzeroski, S.4
  • 43
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • San Mateo: Morgan Kaufmann
    • Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the 18th international conference on machine learning (pp. 609- 616). San Mateo: Morgan Kaufmann.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.