-
2
-
-
0032069371
-
Top-down induction of first-order logical decision trees
-
PII S0004370298000344
-
Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1-2), 285-297. (Pubitemid 128387397)
-
(1998)
Artificial Intelligence
, vol.101
, Issue.1-2
, pp. 285-297
-
-
Blockeel, H.1
De Raedt, L.2
-
4
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159.
-
(1997)
Pattern Recognition
, vol.30
, pp. 1145-1159
-
-
Bradley, A.1
-
6
-
-
0031272327
-
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
-
Chickering,D.,&Heckerman,D.(1997). Efficientapproximationsforthemarginallikelih oodofBayesiannetworkswithhiddenvariables.MachineLearning,29(2-3),181-212. (Pubitemid127510038)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 181-212
-
-
Chickering, D.M.1
Heckerman, D.2
-
9
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
In A. Prieditis & S. Russell (Eds.), San Mateo: Morgan Kaufmann
-
Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the 12th international conference on machine learning (pp. 194-202). San Mateo: Morgan Kaufmann.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
11
-
-
0031145187
-
A comparative analysis of methods for pruning decision trees
-
Esposito,F.,Malerba,D.,&Semeraro,G.(1997). Acomparativeanalysisofmethodsforpruningdecisiontrees. IEEETransactionsonPatternAnalysisandMachineIntelligence,19(5),476-491. (Pubitemid127762239)
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.5
, pp. 476-491
-
-
Esposito, F.1
Malerba, D.2
Semeraro, G.3
-
13
-
-
9444247795
-
-
Tech. Rep.
-
Ferri, C., Flach, P., & Hernandez-Orallo, J. (2003a). Decision trees for ranking: effect of new smoothing methods, new splitting criteria and simple pruning methods. Tech. Rep.
-
(2003)
Decision Trees for Ranking: Effect of New Smoothing Methods, New Splitting Criteria and Simple Pruning Methods
-
-
Ferri, C.1
Flach, P.2
Hernandez-Orallo, J.3
-
16
-
-
33646391218
-
A comparison of approaches for learning probability trees
-
Fierens, D., Ramon, J., Blockeel, H., & Bruynooghe, M. (2005). A comparison of approaches for learning probability trees. In Proceedings of 16th European conference on machine learning (pp. 556-563).
-
(2005)
Proceedings of 16th European Conference on Machine Learning
, pp. 556-563
-
-
Fierens, D.1
Ramon, J.2
Blockeel, H.3
Bruynooghe, M.4
-
17
-
-
77952423329
-
-
Department of Computer Science, Katholieke Universiteit Leuven
-
Fierens, D., Ramon, J., Blockeel, H., & Bruynooghe, M. (2007). A comparison of pruning criteria for probability trees. Tech. Rep. No. CW 488, Department of Computer Science, Katholieke Universiteit Leuven.
-
(2007)
A Comparison of Pruning Criteria for Probability Trees. Tech. Rep. No. CW 488
-
-
Fierens, D.1
Ramon, J.2
Blockeel, H.3
Bruynooghe, M.4
-
19
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
20
-
-
0000220520
-
Learning Bayesian networks with local structure
-
In M. Jordan (Ed.), Dordrecht: Kluwer Academic
-
Friedman, N., & Goldszmidt, M. (1998). Learning Bayesian networks with local structure. In M. Jordan (Ed.), Learning in graphical models (pp. 421-459). Dordrecht: Kluwer Academic.
-
(1998)
Learning in Graphical Models
, pp. 421-459
-
-
Friedman, N.1
Goldszmidt, M.2
-
21
-
-
0041779094
-
Learning probabilistic relational models
-
In S. Džeroski & N. Lavrač (Eds.), Berlin: Springer
-
Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 307-334). Berlin: Springer.
-
(2001)
Relational Data Mining
, pp. 307-334
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
-
24
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
Heckerman, D., Dickering, D., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1, 49-75.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Dickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
25
-
-
0033907286
-
Multiple comparisons in induction algorithms
-
Jensen, D., & Cohen, P. (2000). Multiple comparisons in induction algorithms. Machine Learning, 38(3), 309-338.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 309-338
-
-
Jensen, D.1
Cohen, P.2
-
27
-
-
77952421370
-
-
Department of Computer Science, University of Massachusetts
-
Jensen, D., Neville, J., & Rattigan, M. (2003). Randomization tests for relational learning. Tech. Rep. No.03-05, Department of Computer Science, University of Massachusetts.
-
(2003)
Randomization Tests for Relational Learning. Tech. Rep. No.03-05
-
-
Jensen, D.1
Neville, J.2
Rattigan, M.3
-
31
-
-
84880652043
-
A machine learning approach to building domain-specific search engines
-
McCallum, A., Nigam, K., Rennie, J., & Seymore, K. (1999). A machine learning approach to building domain-specific search engines. In Proceedings of the 16th international joint conference on artificial intelligence (pp. 662-667).
-
(1999)
Proceedings of the 16th International Joint Conference on Artificial Intelligence
, pp. 662-667
-
-
McCallum, A.1
Nigam, K.2
Rennie, J.3
Seymore, K.4
-
34
-
-
77952399122
-
Learning relational probability trees
-
New York: ACM Press
-
Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In Proceedings of the 9th international conference on knowledge discovery and data mining. New York: ACM Press.
-
(2003)
Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining
-
-
Neville, J.1
Jensen, D.2
Friedland, L.3
Hay, M.4
-
36
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-216.
-
(2003)
Machine Learning
, vol.52
, pp. 199-216
-
-
Provost, F.1
Domingos, P.2
-
38
-
-
0024627518
-
Inferring decision trees using the Minimum Description Length principle
-
Quinlan, J., & Rivest, R. (1989). Inferring decision trees using the Minimum Description Length principle. Information and Computation, 80, 227-248.
-
(1989)
Information and Computation
, vol.80
, pp. 227-248
-
-
Quinlan, J.1
Rivest, R.2
-
39
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
40
-
-
33748272679
-
First order random forests: Learning relational classifiers with complex aggregates
-
DOI 10.1007/s10994-006-8713-9, Special ILP Mega-Issue: ILP-2003 and ILP-2004; ILP-2003 Guest Editors: Tamas Horvath and Akihiro Yamamoto; ILP-2004 Guest Editors: Rui Camacho, Ross King and Ashwin Srinivasan
-
Van Assche, A., Vens, C., Blockeel, H., & Džeroski, S. (2006). First order random forests: learning relational classifiers with complex aggregates. Machine Learning, 64(1-3), 149-182. (Pubitemid 44320250)
-
(2006)
Machine Learning
, vol.64
, Issue.1-3
, pp. 149-182
-
-
Van Assche, A.1
Vens, C.2
Blockeel, H.3
Dzeroski, S.4
-
43
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
-
San Mateo: Morgan Kaufmann
-
Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In Proceedings of the 18th international conference on machine learning (pp. 609- 616). San Mateo: Morgan Kaufmann.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
|