-
1
-
-
0001011612
-
Learning from hints in neural networks
-
Abu-Mostafa, Y. S. 1989. Learning from hints in neural networks. Journal of Complexity 6:192-198.
-
(1989)
Journal of Complexity
, vol.6
, pp. 192-198
-
-
Abu-Mostafa, Y. S.1
-
5
-
-
0023646365
-
Occam's razor
-
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmutli, M. K. 1987. Occam's razor. Information Processing Letters 24:377-380.
-
(1987)
Information Processing Letters
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmutli, M. K.4
-
7
-
-
0010896339
-
On finding the most probable model
-
Shrager, J., and Langley, P., eds., San Mateo, CA: Morgan Kaufmann
-
Cheeseman, P. 1990. On finding the most probable model. In Shrager, J., and Langley, P., eds., Computational Models of Scientific Discovery and Theory Formation. San Mateo, CA: Morgan Kaufmann. 73¬ 95.
-
(1990)
Computational Models of Scientific Discovery and Theory Formation
, pp. 73-95
-
-
Cheeseman, P.1
-
8
-
-
0031272327
-
Efficent approximations for the marginal likelihood of Bayesian networks with hidden variables
-
Chickering, D. M., and Heckerman, D. 1997. Efficent approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning 29:181-212.
-
(1997)
Machine Learning
, vol.29
, pp. 181-212
-
-
Chickering, D. M.1
Heckerman, D.2
-
13
-
-
0003577338
-
-
Ph.D. Dissertation, Department of Computer Sciences, University of Wisconsin Madison, Madison, W I
-
Craven, M. W. 1996. Extracting Comprehensible Models from Trained Neural Networks. Ph.D. Dissertation, Department of Computer Sciences, University of Wisconsin - Madison, Madison, W I.
-
(1996)
Extracting Comprehensible Models from Trained Neural Networks
-
-
Craven, M. W.1
-
15
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., and Pazzani, M. 1997. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29:103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
16
-
-
0030216565
-
Unifying instance-based and rule-based induction
-
Domingos, P. 1996. Unifying instance-based and rule-based induction. Machine Learning 24:141-168.
-
(1996)
Machine Learning
, vol.24
, pp. 141-168
-
-
Domingos, P.1
-
21
-
-
85152531997
-
In defense of C4.5: Notes on learning one-level decision trees
-
New Brunswick, N J: Morgan Kaufmann
-
Elomaa, T. 1994. In defense of C4.5: Notes on learning one-level decision trees. In Proceedings of the Eleventh International Conference on Machine Learning, 62¬ 69. New Brunswick, N J: Morgan Kaufmann.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 62-69
-
-
Elomaa, T.1
-
23
-
-
0003483421
-
-
Technical report, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA
-
Friedman, J. H. 1996. On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Technical report, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA. ftp://playfair.Stanford.edu/pub/friedman/kdd.ps.Z.
-
(1996)
On bias, variance, 0/1 - loss, and the curse-of-dimensionality
-
-
Friedman, J. H.1
-
24
-
-
0006899493
-
New measurements highlight the importance of redundant knowledge
-
Montpellier, France: Pitman
-
Gams, M. 1989. New measurements highlight the importance of redundant knowledge. In Proceedings of the Fourth European Working Session on Learning, 71-79. Montpellier, France: Pitman.
-
(1989)
Proceedings of the Fourth European Working Session on Learning
, pp. 71-79
-
-
Gams, M.1
-
25
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
Haussler, D. 1988. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence 36:177-221.
-
(1988)
Artificial Intelligence
, vol.36
, pp. 177-221
-
-
Haussler, D.1
-
26
-
-
0027580356
-
Very simple classification rules perform well on most commonly used dataseis
-
Holte, R. C. 1993. Very simple classification rules perform well on most commonly used dataseis. Machine Learning 11:63-91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R. C.1
-
29
-
-
0031370144
-
Lessons in neural network training: Overfitting may be harder than expected
-
Providence, R I: AAAI Press
-
Lawrence, S.; Giles, C. L.; and Tsoi, A. C. 1997. Lessons in neural network training: Overfitting may be harder than expected. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, 540-545. Providence, R I: AAAI Press.
-
(1997)
Proceedings of the Fourteenth National Conference on Artificial Intelligence
, pp. 540-545
-
-
Lawrence, S.1
Giles, C. L.2
Tsoi, A. C.3
-
30
-
-
0031997697
-
Knowledge-based learning in exploratory sci-enee: Learning rules to predict rodent carcinogenicity
-
Lee, Y.; Buchanan, B. G.; and Aronis, J. M. 1998. Knowledge-based learning in exploratory sci-enee: Learning rules to predict rodent carcinogenicity. Machine Learning 30:217-240.
-
(1998)
Machine Learning
, vol.30
, pp. 217-240
-
-
Lee, Y.1
Buchanan, B. G.2
Aronis, J. M.3
-
31
-
-
0001025418
-
Bayesian interpolation
-
MacKay, D. 1992. Bayesian interpolation. Neural Computation 4:415-447.
-
(1992)
Neural Computation
, vol.4
, pp. 415-447
-
-
MacKay, D.1
-
32
-
-
79952785777
-
An empirical comparison of pruning methods for decision tree induction
-
Mingers, J. 1989. An empirical comparison of pruning methods for decision tree induction. Machine Learning 4:227-243.
-
(1989)
Machine Learning
, vol.4
, pp. 227-243
-
-
Mingers, J.1
-
33
-
-
0003682772
-
-
Technical report, Rutgers University, Computer Science Department, New Brunswick, N J
-
Mitchell, T. M. 1980. The need for biases in learning generalizations. Technical report, Rutgers University, Computer Science Department, New Brunswick, N J.
-
(1980)
The need for biases in learning generalizations
-
-
Mitchell, T. M.1
-
34
-
-
0027652495
-
Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction
-
Murphy, P., and Pazzani, M. 1994. Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction. Journal of Artificial Intelligence Research 1:257-275.
-
(1994)
Journal of Artificial Intelligence Research
, vol.1
, pp. 257-275
-
-
Murphy, P.1
Pazzani, M.2
-
36
-
-
0028407918
-
Theory refinement combining analytical and empirical methods
-
Ourston, D., and Mooney, R. J. 1994. Theory refinement combining analytical and empirical methods. Artificial Intelligence 66:273-309.
-
(1994)
Artificial Intelligence
, vol.66
, pp. 273-309
-
-
Ourston, D.1
Mooney, R. J.2
-
37
-
-
35048871107
-
Beyond concise and colorful: Learning intelligible rules
-
Newport Beach, CA: AAAI Press
-
Pazzani, M.; Mani, S.; and Shankle, W. R. 1997. Beyond concise and colorful: Learning intelligible rules. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, 235-238. Newport Beach, CA: AAAI Press.
-
(1997)
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 235-238
-
-
Pazzani, M.1
Mani, S.2
Shankle, W. R.3
-
38
-
-
0018058024
-
On the connection between the complexity and credibility of inferred models
-
Pearl, J. 1978. On the connection between the complexity and credibility of inferred models. International Journal of General Systems 4:255-264.
-
(1978)
International Journal of General Systems
, vol.4
, pp. 255-264
-
-
Pearl, J.1
-
41
-
-
85166316169
-
Inferring decision trees using the minimum description length principle. Information and Computation 80:227-248. Quinlan, J. R. 1996. Bagging, boosting, and C4.5
-
Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, OR: AAAI Press
-
Quinlan, J. R., and Rivest, R. L. 1989. Inferring decision trees using the minimum description length principle. Information and Computation 80:227-248. Quinlan, J. R. 1996. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 725-730. Portland, OR: AAAI Press.
-
(1989)
, pp. 725-730
-
-
Quinlan, J. R.1
Rivest, R. L.2
-
43
-
-
85115704629
-
For every action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance
-
Tahoe City, CA: Morgan Kaufmann
-
Rao, R. B.; Gordon, D.; and Spears, W. 1995. For every action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelfth International Conference on Machine Learning, 471-479. Tahoe City, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 471-479
-
-
Rao, R. B.1
Gordon, D.2
Spears, W.3
-
44
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. 1978. Modeling by shortest data description. Automatica 14:465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
45
-
-
0001259758
-
Overfitting avoidance as bias
-
Schaffer, C. 1993. Overfitting avoidance as bias. Machine Learning 10:153-178.
-
(1993)
Machine Learning
, vol.10
, pp. 153-178
-
-
Schaffer, C.1
-
47
-
-
0006452365
-
Characterizing the generalization performance of model selection strategies
-
Nashville, T N: Morgan Kaufmann
-
Schuurmans, D.; Ungar, L. H.; and Foster, D. P. 1997. Characterizing the generalization performance of model selection strategies. In Proceedings of the Fourteenth International Conference on Machine Learning, 340-348. Nashville, T N: Morgan Kaufmann.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 340-348
-
-
Schuurmans, D.1
Ungar, L. H.2
Foster, D. P.3
-
49
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
52
-
-
0000107517
-
An information measure for classification
-
Wallace, C. S., and Boulton, D. M. 1968. An information measure for classification. Computer Journal 11:185-194.
-
(1968)
Computer Journal
, vol.11
, pp. 185-194
-
-
Wallace, C. S.1
Boulton, D. M.2
-
53
-
-
0029679031
-
Further experimental evidence against the utility of Occam's razor
-
Webb, G. I. 1996. Further experimental evidence against the utility of Occam's razor. Journal of Artificial Intelligence Research 4:397-417.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 397-417
-
-
Webb, G. I.1
-
55
-
-
0000459353
-
The lack of a priori distinctions between learning algorithms
-
Wolpert, D. 1996. The lack of a priori distinctions between learning algorithms. Neural Computation 8:1341-1390.
-
(1996)
Neural Computation
, vol.8
, pp. 1341-1390
-
-
Wolpert, D.1
|