메뉴 건너뛰기




Volumn , Issue , 1998, Pages 37-43

Occam's Two Razors: The Sharp and the Blunt

Author keywords

[No Author keywords available]

Indexed keywords

OCCAM'S RAZOR; THEORETICAL ARGUMENTS;

EID: 85166350822     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (68)

References (55)
  • 1
    • 0001011612 scopus 로고
    • Learning from hints in neural networks
    • Abu-Mostafa, Y. S. 1989. Learning from hints in neural networks. Journal of Complexity 6:192-198.
    • (1989) Journal of Complexity , vol.6 , pp. 192-198
    • Abu-Mostafa, Y. S.1
  • 7
    • 0010896339 scopus 로고
    • On finding the most probable model
    • Shrager, J., and Langley, P., eds., San Mateo, CA: Morgan Kaufmann
    • Cheeseman, P. 1990. On finding the most probable model. In Shrager, J., and Langley, P., eds., Computational Models of Scientific Discovery and Theory Formation. San Mateo, CA: Morgan Kaufmann. 73¬ 95.
    • (1990) Computational Models of Scientific Discovery and Theory Formation , pp. 73-95
    • Cheeseman, P.1
  • 8
    • 0031272327 scopus 로고    scopus 로고
    • Efficent approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Chickering, D. M., and Heckerman, D. 1997. Efficent approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning 29:181-212.
    • (1997) Machine Learning , vol.29 , pp. 181-212
    • Chickering, D. M.1    Heckerman, D.2
  • 13
    • 0003577338 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Sciences, University of Wisconsin Madison, Madison, W I
    • Craven, M. W. 1996. Extracting Comprehensible Models from Trained Neural Networks. Ph.D. Dissertation, Department of Computer Sciences, University of Wisconsin - Madison, Madison, W I.
    • (1996) Extracting Comprehensible Models from Trained Neural Networks
    • Craven, M. W.1
  • 15
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos, P., and Pazzani, M. 1997. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29:103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 16
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • Domingos, P. 1996. Unifying instance-based and rule-based induction. Machine Learning 24:141-168.
    • (1996) Machine Learning , vol.24 , pp. 141-168
    • Domingos, P.1
  • 21
    • 85152531997 scopus 로고
    • In defense of C4.5: Notes on learning one-level decision trees
    • New Brunswick, N J: Morgan Kaufmann
    • Elomaa, T. 1994. In defense of C4.5: Notes on learning one-level decision trees. In Proceedings of the Eleventh International Conference on Machine Learning, 62¬ 69. New Brunswick, N J: Morgan Kaufmann.
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 62-69
    • Elomaa, T.1
  • 23
    • 0003483421 scopus 로고    scopus 로고
    • Technical report, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA
    • Friedman, J. H. 1996. On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Technical report, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA. ftp://playfair.Stanford.edu/pub/friedman/kdd.ps.Z.
    • (1996) On bias, variance, 0/1 - loss, and the curse-of-dimensionality
    • Friedman, J. H.1
  • 24
    • 0006899493 scopus 로고
    • New measurements highlight the importance of redundant knowledge
    • Montpellier, France: Pitman
    • Gams, M. 1989. New measurements highlight the importance of redundant knowledge. In Proceedings of the Fourth European Working Session on Learning, 71-79. Montpellier, France: Pitman.
    • (1989) Proceedings of the Fourth European Working Session on Learning , pp. 71-79
    • Gams, M.1
  • 25
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • Haussler, D. 1988. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence 36:177-221.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 26
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used dataseis
    • Holte, R. C. 1993. Very simple classification rules perform well on most commonly used dataseis. Machine Learning 11:63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R. C.1
  • 30
    • 0031997697 scopus 로고    scopus 로고
    • Knowledge-based learning in exploratory sci-enee: Learning rules to predict rodent carcinogenicity
    • Lee, Y.; Buchanan, B. G.; and Aronis, J. M. 1998. Knowledge-based learning in exploratory sci-enee: Learning rules to predict rodent carcinogenicity. Machine Learning 30:217-240.
    • (1998) Machine Learning , vol.30 , pp. 217-240
    • Lee, Y.1    Buchanan, B. G.2    Aronis, J. M.3
  • 31
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. 1992. Bayesian interpolation. Neural Computation 4:415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.1
  • 32
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers, J. 1989. An empirical comparison of pruning methods for decision tree induction. Machine Learning 4:227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 33
    • 0003682772 scopus 로고
    • Technical report, Rutgers University, Computer Science Department, New Brunswick, N J
    • Mitchell, T. M. 1980. The need for biases in learning generalizations. Technical report, Rutgers University, Computer Science Department, New Brunswick, N J.
    • (1980) The need for biases in learning generalizations
    • Mitchell, T. M.1
  • 34
    • 0027652495 scopus 로고
    • Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction
    • Murphy, P., and Pazzani, M. 1994. Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction. Journal of Artificial Intelligence Research 1:257-275.
    • (1994) Journal of Artificial Intelligence Research , vol.1 , pp. 257-275
    • Murphy, P.1    Pazzani, M.2
  • 36
    • 0028407918 scopus 로고
    • Theory refinement combining analytical and empirical methods
    • Ourston, D., and Mooney, R. J. 1994. Theory refinement combining analytical and empirical methods. Artificial Intelligence 66:273-309.
    • (1994) Artificial Intelligence , vol.66 , pp. 273-309
    • Ourston, D.1    Mooney, R. J.2
  • 38
    • 0018058024 scopus 로고
    • On the connection between the complexity and credibility of inferred models
    • Pearl, J. 1978. On the connection between the complexity and credibility of inferred models. International Journal of General Systems 4:255-264.
    • (1978) International Journal of General Systems , vol.4 , pp. 255-264
    • Pearl, J.1
  • 41
    • 85166316169 scopus 로고
    • Inferring decision trees using the minimum description length principle. Information and Computation 80:227-248. Quinlan, J. R. 1996. Bagging, boosting, and C4.5
    • Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, OR: AAAI Press
    • Quinlan, J. R., and Rivest, R. L. 1989. Inferring decision trees using the minimum description length principle. Information and Computation 80:227-248. Quinlan, J. R. 1996. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 725-730. Portland, OR: AAAI Press.
    • (1989) , pp. 725-730
    • Quinlan, J. R.1    Rivest, R. L.2
  • 43
    • 85115704629 scopus 로고
    • For every action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance
    • Tahoe City, CA: Morgan Kaufmann
    • Rao, R. B.; Gordon, D.; and Spears, W. 1995. For every action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelfth International Conference on Machine Learning, 471-479. Tahoe City, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 471-479
    • Rao, R. B.1    Gordon, D.2    Spears, W.3
  • 44
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. 1978. Modeling by shortest data description. Automatica 14:465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 45
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. 1993. Overfitting avoidance as bias. Machine Learning 10:153-178.
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 52
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, C. S., and Boulton, D. M. 1968. An information measure for classification. Computer Journal 11:185-194.
    • (1968) Computer Journal , vol.11 , pp. 185-194
    • Wallace, C. S.1    Boulton, D. M.2
  • 53
    • 0029679031 scopus 로고    scopus 로고
    • Further experimental evidence against the utility of Occam's razor
    • Webb, G. I. 1996. Further experimental evidence against the utility of Occam's razor. Journal of Artificial Intelligence Research 4:397-417.
    • (1996) Journal of Artificial Intelligence Research , vol.4 , pp. 397-417
    • Webb, G. I.1
  • 55
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D. 1996. The lack of a priori distinctions between learning algorithms. Neural Computation 8:1341-1390.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.