메뉴 건너뛰기




Volumn 38, Issue 3, 2000, Pages 309-338

Multiple comparisons in induction algorithms

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY; FUNCTIONS; LEARNING ALGORITHMS; STATISTICAL METHODS;

EID: 0033907286     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007631014630     Document Type: Article
Times cited : (154)

References (48)
  • 5
    • 84976766582 scopus 로고
    • Overfitting and under-computing in machine learning
    • Dietterich, T. (1995). Overfitting and under-computing in machine learning. ACM Computing Surveys, 27, 326-327.
    • (1995) ACM Computing Surveys , vol.27 , pp. 326-327
    • Dietterich, T.1
  • 7
    • 0041779664 scopus 로고
    • Alchemy in the behavioral sciences
    • Einhorn, H. (1972). Alchemy in the behavioral sciences. Public Opinion Quarterly, 36, 367-378.
    • (1972) Public Opinion Quarterly , vol.36 , pp. 367-378
    • Einhorn, H.1
  • 9
    • 1642405920 scopus 로고    scopus 로고
    • On the statistical comparison of inductive learning methods
    • D. Fisher & H.-J. Lenz (Eds.), New York, NY: Springer Verlag.
    • Feelders, A. & Verkooijen, W. (1996). On the statistical comparison of inductive learning methods. In D. Fisher & H.-J. Lenz (Eds.), Learning from Data: Artificial and Intelligence V. New York, NY: Springer Verlag.
    • (1996) Learning from Data: Artificial and Intelligence V
    • Feelders, A.1    Verkooijen, W.2
  • 11
    • 85152635090 scopus 로고
    • An ounce of knowledge is worth a Ion of data: Quantitative studies of the trade-off between expertise and data based on statistically well-founded empirical induction
    • San Mateo, CA: Morgan Kaufmann
    • Gaines, B. (1989). An ounce of knowledge is worth a Ion of data: Quantitative studies of the trade-off between expertise and data based on statistically well-founded empirical induction. Proceedings of the Sixth International Workshop on Machine Learning (pp. 156-159). San Mateo, CA: Morgan Kaufmann.
    • (1989) Proceedings of the Sixth International Workshop on Machine Learning , pp. 156-159
    • Gaines, B.1
  • 15
    • 0001068115 scopus 로고
    • Automatic interation detection
    • D. Hawkins (Ed.), Cambridge: Cambridge University Press
    • Hawkins, D. & Kass, G. (1982). Automatic interation detection. In D. Hawkins (Ed.), Topics in Applied Multivariate Analysis. Cambridge: Cambridge University Press.
    • (1982) Topics in Applied Multivariate Analysis
    • Hawkins, D.1    Kass, G.2
  • 17
    • 0343981219 scopus 로고
    • Knowledge discovery through induction with randomization testing
    • Menlo Park, CA: AAAI
    • Jensen, D. (1991). Knowledge discovery through induction with randomization testing. Proceedings of the 1991 Knowledge Discovery in Databases Workshop (pp. 148-159). Menlo Park, CA: AAAI.
    • (1991) Proceedings of the 1991 Knowledge Discovery in Databases Workshop , pp. 148-159
    • Jensen, D.1
  • 20
    • 0016451141 scopus 로고
    • Significance testing in Automatic Interaction Detection (A.I.D.)
    • Kass, G. (1975). Significance testing in Automatic Interaction Detection (A.I.D.). Applied Statistics, 24, 178-189.
    • (1975) Applied Statistics , vol.24 , pp. 178-189
    • Kass, G.1
  • 21
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass, G. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119-127.
    • (1980) Applied Statistics , vol.29 , pp. 119-127
    • Kass, G.1
  • 24
    • 0028405109 scopus 로고
    • The importance of attribute selection measures in decision tree induction
    • Liu, W. & White, A. (1994). The importance of attribute selection measures in decision tree induction. Machine Learning, 15, 25-41.
    • (1994) Machine Learning , vol.15 , pp. 25-41
    • Liu, W.1    White, A.2
  • 26
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers, J. (1989a). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4, 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 27
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers, J. (1989b). An empirical comparison of selection measures for decision-tree induction. Machine Learning, 3, 319-342.
    • (1989) Machine Learning , vol.3 , pp. 319-342
    • Mingers, J.1
  • 28
    • 0343545253 scopus 로고
    • A comment on Einhorn's "Alchemy in the behavioral sciences"
    • Morgan, J. & Andrews, F. (1973). A comment on Einhorn's "Alchemy in the behavioral sciences". Public Opinion Quarterly, 37, 127-129.
    • (1973) Public Opinion Quarterly , vol.37 , pp. 127-129
    • Morgan, J.1    Andrews, F.2
  • 32
    • 0018058024 scopus 로고
    • On the connection between the complexity and credibility of inferred models
    • Pearl, J. (1978). On the connection between the complexity and credibility of inferred models. International Journal of General Systems, 4, 255-264.
    • (1978) International Journal of General Systems , vol.4 , pp. 255-264
    • Pearl, J.1
  • 33
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 35
    • 0000600410 scopus 로고
    • Decision trees and multi-valued attributes
    • J. Hayes, D. Michie & J. Richards (Eds.), Oxford, England: Clarendon Press
    • Quinlan, J. R. (1988). Decision trees and multi-valued attributes. In J. Hayes, D. Michie & J. Richards (Eds.), Machine Intelligence (Vol. 11). Oxford, England: Clarendon Press.
    • (1988) Machine Intelligence , vol.11
    • Quinlan, J.R.1
  • 38
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J. R. & Rivest, R. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.2
  • 39
    • 85115704629 scopus 로고
    • For every generalization action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance
    • San Francisco, CA: Morgan Kaufmann
    • Rao, R., Gordon, D., & Spears, W. (1995). For every generalization action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. Machine Learning: Proceedings of the Twelfth International Conference (pp. 471-479). San Francisco, CA: Morgan Kaufmann.
    • (1995) Machine Learning: Proceedings of the Twelfth International Conference , pp. 471-479
    • Rao, R.1    Gordon, D.2    Spears, W.3
  • 41
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.1
  • 42
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 153-178.
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 47
    • 0002489083 scopus 로고
    • On the connection between in-sample testing and generalization error
    • Wolpert, D. (1992). On the connection between in-sample testing and generalization error. Complex Systems, 6, 47-94.
    • (1992) Complex Systems , vol.6 , pp. 47-94
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.