메뉴 건너뛰기




Volumn 9, Issue 1, 2010, Pages

Sub-modular resolution analysis by network mixture models

Author keywords

Biological networks; Biological validation; Interactome modularity; Mixture models; Variational learning

Indexed keywords

PROTEIN;

EID: 77952041447     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1523     Document Type: Article
Times cited : (10)

References (65)
  • 1
    • 28844496346 scopus 로고    scopus 로고
    • Complex networks emerging from fluctuating random graphs: Analytic formula for the hidden variable distribution
    • Abe, S. and Thurner S. (2005) Complex networks emerging from fluctuating random graphs: analytic formula for the hidden variable distribution. Phys. Rev. E, 72, 036102-4.
    • (2005) Phys. Rev. E , vol.72 , pp. 036102-4
    • Abe, S.1    Thurner, S.2
  • 2
    • 0037163883 scopus 로고    scopus 로고
    • Potential artefacts in protein-interaction networks
    • Aloy P. and Russell R. B. (2002) Potential artefacts in protein-interaction networks. FEBS Lett., 530, 253-254.
    • (2002) FEBS Lett. , vol.530 , pp. 253-254
    • Aloy, P.1    Russell, R.B.2
  • 3
    • 0034633749 scopus 로고    scopus 로고
    • Classes of small-world networks
    • Amaral L. A. N., Scala A., Barthelemy M. and Stanley H. E. (2000) Classes of small-world networks. PNAS, 97 (21), 11149-11152.
    • (2000) PNAS , vol.97 , Issue.21 , pp. 11149-11152
    • Amaral, L.A.N.1    Scala, A.2    Barthelemy, M.3    Stanley, H.E.4
  • 4
    • 0347473809 scopus 로고    scopus 로고
    • Gaining confidence in high-throughput protein interaction networks
    • Bader J. S., Chaudhuri A., Rothberg J. M. and Chant J. (2003) Gaining Confidence in High-throughput protein interaction networks. Nat. Biotech., 22 (1), 78-85.
    • (2003) Nat. Biotech. , vol.22 , Issue.1 , pp. 78-85
    • Bader, J.S.1    Chaudhuri, A.2    Rothberg, J.M.3    Chant, J.4
  • 5
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A. and Albert R. (1999) Emergence of scaling in random networks. Science, 286, 509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.1    Albert, R.2
  • 7
    • 0037405687 scopus 로고    scopus 로고
    • Superstatistics
    • Beck C. and Cohen E. G. D. (2003) Superstatistics. Phys. A, 322, 267-275.
    • (2003) Phys. A , vol.322 , pp. 267-275
    • Beck, C.1    Cohen, E.G.D.2
  • 8
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley J. L. (1975) Multidimensional binary search trees used for associative searching. Commun. ACM, 18 (9), 509-517.
    • (1975) Commun. ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 9
    • 0033628578 scopus 로고    scopus 로고
    • Practical identifiability of finite mixtures of multivariate Bernoulli distributions
    • Carreira-Perpinan M. A. and Renals S. (2000) Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Computat., 12, 141152.
    • (2000) Neural Computat. , vol.12 , pp. 141152
    • Carreira-Perpinan, M.A.1    Renals, S.2
  • 11
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • Clauset A., Newman M. E. J. and Moore C. (2004) Finding community structure in very large networks. Phys. Rev. e 70, 066111.
    • (2004) Phys. Rev. E , vol.70 , pp. 066111
    • Clauset, A.1    Newman, M.E.J.2    Moore, C.3
  • 13
    • 39449099786 scopus 로고    scopus 로고
    • A mixture model for random graphs
    • Daudin J. J, Picard F., and Robin S. (2006) A mixture model for random graphs. Stat. Comput., 18, 173-183.
    • (2006) Stat. Comput. , vol.18 , pp. 173-183
    • Daudin, J.J.1    Picard, F.2    Robin, S.3
  • 15
    • 0036580169 scopus 로고    scopus 로고
    • Protein interactions: Two methods for assessment of the reliability of high throughput observations
    • Deane C. M., Salwinski L., Xenarios I., and Eisenberg D. (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteom., 1, 349356.
    • (2002) Mol. Cell. Proteom. , vol.1 , pp. 349356
    • Deane, C.M.1    Salwinski, L.2    Xenarios, I.3    Eisenberg, D.4
  • 16
    • 0002629270 scopus 로고
    • Likelihood from incomplete data via the EM algorithm
    • Dempster A., Laird N., and Rubin D. 1977 Likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B, 39 (1), 138.
    • (1977) J. R. Statist. Soc. B , vol.39 , Issue.1 , pp. 138
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 18
    • 77952034628 scopus 로고
    • Finite mixture distributions
    • Everitt B. S. and Hand D. J. (1981) Finite mixture distributions. London: Chapman and Hall.
    • (1981) And Hand D. J.
    • Everitt, B.S.1
  • 20
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson T. S. (1973) A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209-230.
    • (1973) Ann. Statist. , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 23
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for bayesian mixtures of factor analysers
    • (eds S. A. Solla, T. K. Leen and K. Mller), MIT Press
    • Ghahramani Z. and Beal M. J. (2000) Variational Inference for Bayesian Mixtures of Factor Analysers. In Advances in Neural Information Processing Systems (eds S. A. Solla, T. K. Leen and K. Mller), 12, pp. 449-455. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 24
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis usingboth identiable and unidentiable models
    • Goodman L. A. (1974) Exploratory latent structure analysis usingboth identiable and unidentiable models. Biometrika, 61 (2), 215231.
    • (1974) Biometrika , vol.61 , Issue.2 , pp. 215231
    • Goodman, L.A.1
  • 25
    • 26444506831 scopus 로고    scopus 로고
    • Effect of dataset selection on the topological interpretation of protein interaction networks
    • DOI 10.1186/1471-2164-6-131
    • Hakes L., Robertson D. L. and Oliver S. G. (2005) Effect of datset selection on the topological interpretation of protein interaction networks. BMC Genom., 6:131. (Pubitemid 41418980)
    • (2005) BMC Genomics , vol.6 , pp. 131
    • Hakes, L.1    Robertson, D.L.2    Oliver, S.G.3
  • 26
    • 33847744247 scopus 로고    scopus 로고
    • How complete are current yeast and human protein-interaction networks?
    • Hart G. T., Ramani A. K. and Marcotte E. M. (2006) How complete are current yeast and human protein-interaction networks? Gen. Biol., 7 (11), 120.1-120.9.
    • (2006) Gen. Biol. , vol.7 , Issue.11 , pp. 1201-1209
    • Hart, G.T.1    Ramani, A.K.2    Marcotte, E.M.3
  • 27
    • 33646089199 scopus 로고    scopus 로고
    • Nonextensive aspects of small-world networks
    • Hasegawa H. (2006) Nonextensive aspects of small-world networks. Phys. A, 365, 383-401.
    • (2006) Phys. A , vol.365 , pp. 383-401
    • Hasegawa, H.1
  • 28
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan J. A. and Wong M. A. (1979) A K-Means Clustering Algorithm. Appl. Statist., 28 (1), 100108.
    • (1979) Appl. Statist. , vol.28 , Issue.1 , pp. 100108
    • Hartigan, J.A.1    Wong, M.A.2
  • 29
    • 45749117949 scopus 로고    scopus 로고
    • Bayesian approach to network modularity
    • Hofman J. M. and Wiggins C. H. (2008) Bayesian approach to network modularity. Phys. Rev Lett., 100, 258701.
    • (2008) Phys. Rev Lett. , vol.100 , pp. 258701
    • Hofman, J.M.1    Wiggins, C.H.2
  • 31
    • 4644306020 scopus 로고    scopus 로고
    • Analyzing protein function on a genomic scale: The importance of gold-standard positives and negatives for network prediction
    • DOI 10.1016/j.mib.2004.08.012, PII S1369527404001067
    • Jansen R. and Gerstein M. (2004) Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr. Opin. in Microbiol., 7, 535-545. (Pubitemid 39297135)
    • (2004) Current Opinion in Microbiology , vol.7 , Issue.5 , pp. 535-545
    • Jansen, R.1    Gerstein, M.2
  • 32
  • 33
    • 0001654702 scopus 로고
    • Extensions of Lipschitz maps into a Hilbert space
    • Johnson W. and Lindensrauss J. (1984) Extensions of Lipschitz maps into a Hilbert space. Contemp. Math., 26, 189-206.
    • (1984) Contemp. Math. , vol.26 , pp. 189-206
    • Johnson, W.1    Lindensrauss, J.2
  • 34
    • 33748706765 scopus 로고    scopus 로고
    • Global topological features of cancer proteins in the human interactome
    • Jonsson P. F. and Bates P. A. (2006) Global topological features of cancer proteins in the human interactome. Bioinform., 22 (18), 22912297.
    • (2006) Bioinform. , vol.22 , Issue.18 , pp. 22912297
    • Jonsson, P.F.1    Bates, P.A.2
  • 37
    • 0003286354 scopus 로고
    • Mixture models: Theory, geometry and applications
    • Lindsay B. (1995) Mixture Models: Theory, Geometry and Applications. Hayward: Inst. Math. Stat.
    • (1995) Hayward: Inst. Math. Stat
    • Lindsay, B.1
  • 38
    • 22244447463 scopus 로고    scopus 로고
    • Assessing the limits of genomic data integration for predicting protein networks
    • DOI 10.1101/gr.3610305
    • Lu L. J., Xia Y., Paccanaro A., Yu H. and Gerstein M. (2005) Assessing the limits of genomic data integration for predicting protein networks. Gen. Res., 15, 945-53. (Pubitemid 40994214)
    • (2005) Genome Research , vol.15 , Issue.7 , pp. 945-953
    • Lu, L.J.1    Xia, Y.2    Paccanaro, A.3    Yu, H.4    Gerstein, M.5
  • 41
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high - dimensional data by mixtures of factor analyzers
    • DOI 10.1016/S0167-9473(02)00183-4, PII S0167947302001834
    • McLachlan G. F., Peel D. and Bean R. W. (2003) Modelling high dimensional data by mixtures of factor analyzers. Computat. Stat. Data. Anal., 41, 379-388. (Pubitemid 36065383)
    • (2003) Computational Statistics and Data Analysis , vol.41 , Issue.3-4 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 42
    • 78651321813 scopus 로고    scopus 로고
    • Advances in human protein interactome inference
    • (eds S. Dabo-Niang and F. Ferraty), Heidelberg: Physica-Verlag
    • Marras E. and Capobianco E. (2008) Advances in human protein interactome inference, in Functional and Operational Statistics (eds S. Dabo-Niang and F. Ferraty) pp. 8994. Heidelberg: Physica-Verlag.
    • (2008) Functional and Operational Statistics , pp. 8994
    • Marras, E.1    Capobianco, E.2
  • 43
    • 65449189592 scopus 로고    scopus 로고
    • Mining protein-protein interaction networks: Denoising effects
    • Marras E. and Capobianco E. (2009) Mining Protein-Protein Interaction Networks: Denoising Effects. JSTAT, P01006.
    • (2009) JSTAT
    • Marras, E.1    Capobianco, E.2
  • 44
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M. E. J. and Girvan M. (2004) Finding and evaluating community structure in networks, Phys. Rev. e 69, 026113.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 47
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • DOI 10.1038/nature03607
    • Palla G., Dernyi I., Farkas I. and Vicsek T. (2005) Uncovering the overlapping community structure of complex networks in nature an society. Nat., 435, 814-818. (Pubitemid 40839731)
    • (2005) Nature , vol.435 , Issue.7043 , pp. 814-818
    • Palla, G.1    Derenyi, I.2    Farkas, I.3    Vicsek, T.4
  • 48
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R. A. and Walker H. F. (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev., 26 (2), 195-239.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 49
    • 34250655368 scopus 로고    scopus 로고
    • An information theoretic framework for resolving community structure in comllex networks
    • Roswall M. and Bergstrom C. T. (2007) An information theoretic framework for resolving community structure in comllex networks. PNAS, 104 (18), 7327-7331.
    • (2007) PNAS , vol.104 , Issue.18 , pp. 7327-7331
    • Roswall, M.1    Bergstrom, C.T.2
  • 51
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • Sharan R., Ulitsky I. and Shamir R. (2007) Network-based prediction of protein function. Mol. Syst. Biol., 3:88.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 88
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 52
    • 77952089373 scopus 로고    scopus 로고
    • Subnets of scale-free networks are not scale-free
    • Stumpf M. P. H., Wiuf C. and May R. M. (2006) Subnets of scale-free networks are not scale-free. PNAS, 103, 7566-7570.
    • (2006) PNAS , vol.103 , pp. 7566-7570
    • Stumpf, M.P.H.1    Wiuf, C.2    May, R.M.3
  • 53
  • 54
    • 34548839416 scopus 로고    scopus 로고
    • Unified model for network dynamics exhibiting nonextensive statistics
    • Thurner S., Kyriakopoulos F. and Tsallis C. (2007) Unified model for network dynamics exhibiting nonextensive statistics. Phys. Rev. E, 76 (2), 3.
    • (2007) Phys. Rev. E , vol.76 , Issue.2 , pp. 3
    • Thurner, S.1    Kyriakopoulos, F.2    Tsallis, C.3
  • 55
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping M. E. and Bishop C. M. (1999) Mixtures of probabilistic principal component analyzers. Neur. Computat., 11 (2), 443-482.
    • (1999) Neur. Computat. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 59
    • 77952039952 scopus 로고    scopus 로고
    • Detecting disease-specific disregulated pathways via analysis of clinical expression profiles
    • Ulitsky I., Karp R. M. and Shamir R. (2008) Detecting disease-specific disregulated pathways via analysis of clinical expression profiles. Proc. RECOMB, LNCS., 4955.
    • (2008) Proc. RECOMB, LNCS. , pp. 4955
    • Ulitsky, I.1    Karp, R.M.2    Shamir, R.3
  • 60
    • 71049125698 scopus 로고    scopus 로고
    • Finding hypergraph communities: A Bayesian approac-hand variational solution
    • Vazquez A. (2009) Finding hypergraph communities: a Bayesian approac-hand variational solution. J Statist. Mech., P07006.
    • (2009) J. Statist. Mech.
    • Vazquez, A.1
  • 61
    • 14844311241 scopus 로고    scopus 로고
    • Interactome modeling
    • DOI 10.1016/j.febslet.2005.02.030, Systems Biology
    • Vidal M. (2005) Interactome Modeling. FEBS Let., 579, 1834-1838. (Pubitemid 40342661)
    • (2005) FEBS Letters , vol.579 , Issue.8 , pp. 1834-1838
    • Vidal, M.1
  • 62
    • 57149109323 scopus 로고    scopus 로고
    • Biclustering sparse binary genomic data
    • van Uitert M., Meuleman W. and Wessels L. (2008) Biclustering sparse binary genomic data. J. Comput. Biol., 15 (10), 1329-45
    • (2008) J. Comput. Biol. , vol.15 , Issue.10 , pp. 1329-1345
    • Van Uitert, M.1    Meuleman, W.2    Wessels, L.3
  • 63
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • von Mering C., Krause R., Snel B., Cornell M., Oliver S. G., Fields S., and Bork P. (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nat., 417, 399-401. (Pubitemid 34563526)
    • (2002) Nature , vol.417 , Issue.6887 , pp. 399-403
    • Von Mering, C.1    Krause, R.2    Snel, B.3    Cornell, M.4    Oliver, S.G.5    Fields, S.6    Bork, P.7
  • 64
    • 28444448000 scopus 로고    scopus 로고
    • Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues
    • DOI 10.1093/bioinformatics/bti688
    • Wachi S., Yoneda K. and Wu R. (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinform., 21 (23), 4205-4208. (Pubitemid 41724298)
    • (2005) Bioinformatics , vol.21 , Issue.23 , pp. 4205-4208
    • Wachi, S.1    Yoneda, K.2    Wu, R.3
  • 65
    • 33751017706 scopus 로고    scopus 로고
    • Discovering disease-genes by topological features in human protein-protein interaction network
    • DOI 10.1093/bioinformatics/btl467
    • Xu J. and Li Y. (2006) Discovering disease-genes by topological features in human proteinprotein interaction network. Bioinform., 22 (22), 2800-2805. (Pubitemid 44742401)
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2800-2805
    • Xu, J.1    Li, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.