-
1
-
-
0032786569
-
Improving support vector machine classifiers by modifying kernel functions
-
S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 12 (6): 783-789, 1999.
-
(1999)
Neural Networks
, vol.12
, Issue.6
, pp. 783-789
-
-
Amari, S.1
Wu, S.2
-
2
-
-
0001614864
-
The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
-
In T. Terlaky H. Frenk, K. Roos and S. Zhang, editors, Kluwer Academic Publishers
-
E.D. Andersen and K.D. Andersen. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In T. Terlaky H. Frenk, K. Roos and S. Zhang, editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers, 2000.
-
(2000)
High Performance Optimization
, pp. 197-232
-
-
Andersen, E.D.1
Andersen, K.D.2
-
3
-
-
26944453996
-
Learning convex combinations of continuously parameterized basic kernels
-
A. Argyriou, C.A. Micchelli, and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. In Proceedings of the 18th Conference on Learning Theory, volume 18, pages 338-352, 2005.
-
(2005)
Proceedings of the 18th Conference on Learning Theory
, vol.18
, pp. 338-352
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
-
4
-
-
77951971315
-
A DC-programming algorithm for kernel selection
-
Pittsburgh, PA
-
rd International Conference on Machine Learning, volume 23, pages 338-352, Pittsburgh, PA, 2006.
-
(2006)
rd International Conference on Machine Learning, Volume
, vol.23
, pp. 338-352
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.A.3
Pontil, M.4
-
5
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
Banff, Canada, Omnipress.
-
F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the 21st International Conference on Machine Learning, volume 21, pages 41-48, Banff, Canada, 2004. Omnipress.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, vol.21
, pp. 41-48
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
6
-
-
0001303543
-
Monotone functions, Stieltjessche integrale und harmonische analyse
-
S. Bochner. Monotone functions, Stieltjessche integrale und harmonische analyse. Mathematische Annalen, 108: 378-410, 1933.
-
(1933)
Mathematische Annalen
, vol.108
, pp. 378-410
-
-
Bochner, S.1
-
9
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46 (1-3): 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
10
-
-
84898984811
-
A geometric interpretation of v-svm classifiers
-
Cambridge, MA.; MIT Press.
-
D.J. Crisp and C.J.C. Burges. A geometric interpretation of v-svm classifiers. In Advances in Neural Information Processing Systems, volume 12, pages 244-250, Cambridge, MA.; 1999. MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
, pp. 244-250
-
-
Crisp, D.J.1
Burges, C.J.C.2
-
14
-
-
0001307390
-
The theory of max-min, with applications
-
J. M. Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14 (4): 641-664, 1966.
-
(1966)
SIAM Journal on Applied Mathematics
, vol.14
, Issue.4
, pp. 641-664
-
-
Danskin, J.M.1
-
16
-
-
0038259114
-
Classes of kernels for machine learning: A statistics perspective
-
M.G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2: 299-312, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 299-312
-
-
Genton, M.G.1
-
17
-
-
0004063539
-
-
A.I. Memo 1430, Artificial Intelligence Labratory, Massachusetts Institute of Technology, June
-
E Girosi, M. Jones, and T. Poggio. Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines. A.I. Memo 1430, Artificial Intelligence Labratory, Massachusetts Institute of Technology, June 1993.
-
(1993)
Priors, Stabilizers and Basis Functions: from Regularization to Radial, Tensor and Additive Splines
-
-
Girosi, E.1
Jones, M.2
Poggio, T.3
-
18
-
-
23944487822
-
Gradient-based adaptation of general Gaussian kernels
-
T. Glasmachers and C. Igel. Gradient-based adaptation of general Gaussian kernels. Neural Computation, 17: 2099-2105, 2005.
-
(2005)
Neural Computation
, vol.17
, pp. 2099-2105
-
-
Glasmachers, T.1
Igel, C.2
-
19
-
-
0027657329
-
Semi-infinite programming: Theory, methods, and applications
-
R. Hettich and K.O. Kortanek. Semi-infinite programming: theory, methods, and applications. SIAMReview, 35 (3): 380-429, 1993.
-
(1993)
SIAMReview
, vol.35
, Issue.3
, pp. 380-429
-
-
Hettich, R.1
Kortanek, K.O.2
-
20
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, MIT Press
-
T. Joachims. Making large-scale support vector machine learning practical. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods- Support Vector Learning, pages 169-184. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods- Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
22
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5: 27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
23
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D.C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming B, 45 (3): 503-528, 1989.
-
(1989)
Mathematical Programming B
, vol.45
, Issue.3
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
24
-
-
33646516358
-
A geometric approach to support vector machine (SVM) classification
-
M.E. Mavroforakis and S. Theodorodis. A geometric approach to support vector machine (SVM) classification. IEEE Transactions on Neural Networks, 17 (3): 671-682, 2006.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.3
, pp. 671-682
-
-
Mavroforakis, M.E.1
Theodorodis, S.2
-
26
-
-
33847676040
-
-
Research Note RN/05/09, Department of Computer Science, University College London, June
-
C.A. Micchelli, M. Pontil, Q. Wu, and D.X. Zhou. Error bounds for learning the kernel. Research Note RN/05/09, Department of Computer Science, University College London, June 2005b.
-
(2005)
Error Bounds for Learning the Kernel
-
-
Micchelli, C.A.1
Pontil, M.2
Wu, Q.3
Zhou, D.X.4
-
27
-
-
84966262179
-
Updating quasi-newton matrices with limited storage
-
J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35 (151): 773-782, 1980.
-
(1980)
Mathematics of Computation
, vol.35
, Issue.151
, pp. 773-782
-
-
Nocedal, J.1
-
28
-
-
0003982971
-
-
second edition. Springer Science+Business Media, LLC, New York, USA
-
J. Nocedal and S.J. Wright. Numerical Optimization, second edition. Springer Science+Business Media, LLC, New York, USA, 2006.
-
(2006)
Numerical Optimization
-
-
Nocedal, J.1
Wright, S.J.2
-
30
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, MIT Press
-
J.C. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods- Support Vector Learning, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods- Support Vector Learning
, pp. 185-208
-
-
Piatt, J.C.1
-
31
-
-
57249084590
-
SimpleMKL
-
A. Rakotomamonjy, ER. Bach, S. Canu, and V. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9: 2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, E.R.2
Canu, S.3
Grandvalet, V.4
-
32
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, an K.R. Müller. Soft margins for AdaBoost. Machine Learning, 42 (3): 287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
33
-
-
0000385980
-
Numerical methods for semi-infinite programming: A survey
-
In R. Reemtsen and Rückmann, editors, KluwerAcademicPublishers
-
R. Reemtsen and S. Görner. Numerical methods for semi-infinite programming: A survey. In R. Reemtsen and Rückmann, editors, Semi-infinite Programming, pages 195-275. Kluwer Academic Publishers, 1998.
-
(1998)
Semi-infinite Programming
, pp. 195-275
-
-
Reemtsen, R.1
Görner, S.2
-
34
-
-
0004267646
-
-
Princeton University Press, Princeton, New Jersey
-
R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
35
-
-
0003655416
-
-
3rd edition. Macmillan Publishing Company, New York
-
H.L. Royden. Real Analysis, 3rd edition. Macmillan Publishing Company, New York, 1988.
-
(1988)
Real Analysis
-
-
Royden, H.L.1
-
36
-
-
0004057553
-
-
2nd edition. McGraw-Hill, New York
-
W. Rudin. Functional Analysis, 2nd edition. McGraw-Hill, New York, 1991.
-
(1991)
Functional Analysis
-
-
Rudin, W.1
-
38
-
-
0001743201
-
Metric spaces and completely monotone functions
-
I.J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39 (4): 811-841, 1938.
-
(1938)
Annals of Mathematics
, vol.39
, Issue.4
, pp. 811-841
-
-
Schoenberg, I.J.1
-
39
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf and A. Smola. Learning with Kernels- Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels- Support Vector Machines, Regularization, Optimization and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
40
-
-
0000263906
-
Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces
-
Springer Lecture Notes in Computer Science
-
B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces. In DAGM Symposium Mustererkennung. Springer Lecture Notes in Computer Science, 1998.
-
(1998)
DAGM Symposium Mustererkennung
-
-
Schölkopf, B.1
Knirsch, P.2
Smola, A.3
Burges, C.4
-
41
-
-
84864066318
-
A general and efficient multiple kernel learning algorithm
-
Cambridge MA, MIT Press.
-
S. Sonnenburg, G. Rätsch, and C. Schafer. A general and efficient multiple kernel learning algorithm. In Advances in Neural Information Processing Systems, volume 18, pages 1275-1282, Cambridge MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1275-1282
-
-
Sonnenburg, S.1
Rätsch, G.2
Schafer, C.3
-
42
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C Schafer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7: 1531-1567, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1567
-
-
Sonnenburg, S.1
Rätsch, G.2
Schafer, C.3
Schölkopf, B.4
-
44
-
-
0032594959
-
An overview of statistical learning theory
-
V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10 (5): 988-999, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
45
-
-
15344339935
-
Optimizing the kernel in the empirical feature space
-
H. Xiong, M.N.S. Swamy, and M.O. Ahmad. Optimizing the kernel in the empirical feature space. IEEE Transactions on Neural Networks, 16 (2): 460-474, 2005.
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.2
, pp. 460-474
-
-
Xiong, H.1
Swamy, M.N.S.2
Ahmad, M.O.3
-
46
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
British Columbia, Canada, MIT Press.
-
Z. Xu, R. Jin, I. King, and M.R. Lyu. An extended level method for efficient multiple kernel learning. In Advances in Neural Information Processing Systems, volume 21, pages 1825-1832, British Columbia, Canada, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.R.4
|