메뉴 건너뛰기




Volumn 14, Issue 1-2, 2010, Pages 93-102

Cell interactions in bone tissue engineering

Author keywords

Bone; Cell to cell interactions; Chondrocyte; Co cultures; Osteoblast; Osteoclast; Osteogenesis; Stem cells; Tissue engineering; Vascularization

Indexed keywords

BIOMATERIAL; TISSUE SCAFFOLD;

EID: 77951970008     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1582-4934.2009.01005.x     Document Type: Review
Times cited : (45)

References (111)
  • 1
    • 43049134164 scopus 로고    scopus 로고
    • Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering
    • Dawson JI, Oreffo ROC. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch. Biochem. Biophys. 2008, 473:124-31.
    • (2008) Arch. Biochem. Biophys. , vol.473 , pp. 124-131
    • Dawson, J.I.1    Oreffo, R.O.C.2
  • 2
    • 1542359494 scopus 로고    scopus 로고
    • The use of conventional and complementary treatments for knee osteoarthritis in the community
    • Jordan KM, Sawyer S, Coakley P. The use of conventional and complementary treatments for knee osteoarthritis in the community. Rheumatology. 2004, 43:381-4.
    • (2004) Rheumatology. , vol.43 , pp. 381-384
    • Jordan, K.M.1    Sawyer, S.2    Coakley, P.3
  • 3
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. Tissue engineering. Science. 1993, 260:920-6.
    • (1993) Science. , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 4
    • 85016540358 scopus 로고
    • Tissue engineering: from biology to biological substitutes
    • Nerem RM, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue Eng. 1995, 1:3-13.
    • (1995) Tissue Eng. , vol.1 , pp. 3-13
    • Nerem, R.M.1    Sambanis, A.2
  • 5
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: state of the art and future trends
    • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 2004, 4:743-65.
    • (2004) Macromol. Biosci. , vol.4 , pp. 743-765
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 7
    • 2942523836 scopus 로고    scopus 로고
    • 5th ed., Washington, DC, American Society of Bone and Mineral Research.
    • Baron R. General principles of bone biology 2003, 1-8. 5th ed., Washington, DC, American Society of Bone and Mineral Research, pp.
    • (2003) General principles of bone biology , pp. 1-8
    • Baron, R.1
  • 8
    • 0032060217 scopus 로고    scopus 로고
    • Bone remodeling
    • Hill PA, Orth M. Bone remodeling. J. Orthod. 1998, 25:101-7.
    • (1998) J. Orthod. , vol.25 , pp. 101-107
    • Hill, P.A.1    Orth, M.2
  • 10
    • 0002640027 scopus 로고    scopus 로고
    • The osteoblast lineage
    • Bilezikian JP RL, Rodan GA. editors, San Diego, Academic Press
    • Aubin JE, Liu F. The osteoblast lineage. Principles of bone biology 1996, 51-68. Bilezikian JP RL, Rodan GA. In, editors, San Diego, Academic Press, pp
    • (1996) Principles of bone biology , pp. 51-68
    • Aubin, J.E.1    Liu, F.2
  • 11
    • 0034285013 scopus 로고    scopus 로고
    • The osteoblast: a sophisticated fibroblast under central surveillance
    • Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000, 289:1501-4.
    • (2000) Science. , vol.289 , pp. 1501-1504
    • Ducy, P.1    Schinke, T.2    Karsenty, G.3
  • 12
    • 0037706865 scopus 로고    scopus 로고
    • Osteoblasts: Novel roles in orchestration of skeletal architecture
    • Mackie EJ. Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 2003, 35:1301-5.
    • (2003) Int. J. Biochem. Cell Biol. , vol.35 , pp. 1301-1305
    • Mackie, E.J.1
  • 13
    • 0002653562 scopus 로고    scopus 로고
    • The osteocyte
    • Bilezikian JP RL, Rodan GA. editors, San Diego, Academic Press.
    • Nijweide PJ, Burger EH, Nulend JK. The osteocyte. Principles of bone biology 1996, 115-26. Bilezikian JP RL, Rodan GA, In, editors, San Diego, Academic Press, pp.
    • (1996) Principles of bone biology , pp. 115-126
    • Nijweide, P.J.1    Burger, E.H.2    Nulend, J.K.3
  • 14
    • 0003139148 scopus 로고    scopus 로고
    • Osteoclast function: biology and mechanisms
    • Bilezikan JP, Raisz LG, Rodan GA. editors, San Diego, Academic Press.
    • Väänänen K. Osteoclast function: biology and mechanisms. Principles of bone biology 1996, Volume 1:127-40. Bilezikan JPRaisz LGRodan GA. In, editors, San Diego, Academic Press, pp.
    • (1996) Principles of bone biology , vol.1 , pp. 127-140
    • Väänänen, K.1
  • 15
    • 0035070367 scopus 로고    scopus 로고
    • Cell adhesion molecules in human osteoblasts: structure and function
    • Bennett JH, Moffatt S, Horton M. Cell adhesion molecules in human osteoblasts: structure and function. Histol. Histopathol. 2001, 16:603-11.
    • (2001) Histol. Histopathol. , vol.16 , pp. 603-611
    • Bennett, J.H.1    Moffatt, S.2    Horton, M.3
  • 16
    • 0036158227 scopus 로고    scopus 로고
    • Role of n-cadherin in bone formation
    • Marie PJ. Role of n-cadherin in bone formation. J. Cell. Physiol. 2002, 190:297-305.
    • (2002) J. Cell. Physiol. , vol.190 , pp. 297-305
    • Marie, P.J.1
  • 17
    • 0032737614 scopus 로고    scopus 로고
    • The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment
    • Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit. Rev. Oral Biol. Med. 1999, 10:40-57.
    • (1999) Crit. Rev. Oral Biol. Med. , vol.10 , pp. 40-57
    • Franceschi, R.T.1
  • 18
    • 0029381398 scopus 로고
    • Integrin-extracellular matrix interactions in connective tissue remodeling and osteoblast differentiation
    • Globus RK, Moursi A, Zimmerman D. Integrin-extracellular matrix interactions in connective tissue remodeling and osteoblast differentiation. ASGSB Bull.: Publ. Am. Soc. Gravit. Space Biol. 1995, 8:19.
    • (1995) ASGSB Bull.: Publ. Am. Soc. Gravit. Space Biol. , vol.8 , pp. 19
    • Globus, R.K.1    Moursi, A.2    Zimmerman, D.3
  • 20
    • 0035130601 scopus 로고    scopus 로고
    • A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy
    • Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001, 28:145-9.
    • (2001) Bone. , vol.28 , pp. 145-149
    • Kamioka, H.1    Honjo, T.2    Takano-Yamamoto, T.3
  • 21
    • 0025630632 scopus 로고
    • Morphological study of intercellular junctions during osteocyte differentiation
    • Palumbo C, Palazzini S, Marotti G. Morphological study of intercellular junctions during osteocyte differentiation. Bone. 1990, 11:401-6.
    • (1990) Bone. , vol.11 , pp. 401-406
    • Palumbo, C.1    Palazzini, S.2    Marotti, G.3
  • 22
    • 0028134677 scopus 로고
    • Expression of vacuolar h+-atpase in osteoclasts and its role in resorption
    • Sasaki T, Hong MH, Udagawa N. Expression of vacuolar h+-atpase in osteoclasts and its role in resorption. Cell Tissue Res. 1994, 278:265-71.
    • (1994) Cell Tissue Res. , vol.278 , pp. 265-271
    • Sasaki, T.1    Hong, M.H.2    Udagawa, N.3
  • 24
    • 0030913467 scopus 로고    scopus 로고
    • Osteoclasts, macrophages, and the molecular mechanisms of bone resorption
    • Teitelbaum SL, Tondravi MM, Ross FP. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption. J. Leukoc. Biol. 1997, 61:381-8.
    • (1997) J. Leukoc. Biol. , vol.61 , pp. 381-388
    • Teitelbaum, S.L.1    Tondravi, M.M.2    Ross, F.P.3
  • 26
    • 0027105695 scopus 로고
    • Skeletal adaptations during growth
    • Jee WS, Frost HM. Skeletal adaptations during growth. Triangle. 1992, 31:77-88.
    • (1992) Triangle. , vol.31 , pp. 77-88
    • Jee, W.S.1    Frost, H.M.2
  • 28
    • 0014451102 scopus 로고
    • Tetracycline-based histological analysis of bone remodeling
    • Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif. Tissue Int. 1969, 3:211-37.
    • (1969) Calcif. Tissue Int. , vol.3 , pp. 211-237
    • Frost, H.M.1
  • 29
    • 42749088910 scopus 로고    scopus 로고
    • Osteoclast-osteoblast communication
    • Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 2008, 473:201-9.
    • (2008) Arch. Biochem. Biophys. , vol.473 , pp. 201-209
    • Matsuo, K.1    Irie, N.2
  • 30
    • 0036140080 scopus 로고    scopus 로고
    • Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression
    • Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002, 30:5-7.
    • (2002) Bone. , vol.30 , pp. 5-7
    • Parfitt, A.M.1
  • 31
    • 0028362417 scopus 로고
    • Role of vascular endothelial cells in bone biology
    • Collin-Osdoby P. Role of vascular endothelial cells in bone biology. J. Cell. Biochem. 1994, 55:304-9.
    • (1994) J. Cell. Biochem. , vol.55 , pp. 304-309
    • Collin-Osdoby, P.1
  • 32
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: the potential for engineering bone
    • Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cells Mater. 2008, 15:100-14.
    • (2008) Eur. Cells Mater. , vol.15 , pp. 100-114
    • Kanczler, J.M.1    Oreffo, R.O.C.2
  • 33
    • 0024989358 scopus 로고
    • Biology of bone endothelial cells
    • Streeten EA, Brandi ML. Biology of bone endothelial cells. Bone Miner. 1990, 10:85-94.
    • (1990) Bone Miner. , vol.10 , pp. 85-94
    • Streeten, E.A.1    Brandi, M.L.2
  • 34
    • 0028362416 scopus 로고
    • Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone
    • Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 1994, 55:273-86.
    • (1994) J. Cell. Biochem. , vol.55 , pp. 273-286
    • Parfitt, A.M.1
  • 35
    • 0002313309 scopus 로고    scopus 로고
    • Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis
    • Marcus R FD, Nelson DA, Rosen CJ. editors, 2nd ed, San Diego, Academic Press.
    • Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis. Osteoporosis 2008, 315-29. Marcus R FDNelson DARosen CJ. In, editors, 2nd ed, San Diego, Academic Press, pp.
    • (2008) Osteoporosis , pp. 315-329
    • Parfitt, A.M.1
  • 36
    • 0034166650 scopus 로고    scopus 로고
    • The mechanism of coupling: a role for the vasculature
    • Parfitt AM. The mechanism of coupling: a role for the vasculature. Bone. 2000, 26:319-23.
    • (2000) Bone. , vol.26 , pp. 319-323
    • Parfitt, A.M.1
  • 37
    • 0037242023 scopus 로고    scopus 로고
    • Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment
    • Gerstenfeld LC, Barnes GL, Shea CM. Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment. Connect. Tissue Res. 2003, 44:85-91.
    • (2003) Connect. Tissue Res. , vol.44 , pp. 85-91
    • Gerstenfeld, L.C.1    Barnes, G.L.2    Shea, C.M.3
  • 38
    • 0036150574 scopus 로고    scopus 로고
    • Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells
    • Gerstenfeld LC, Cruceta J, Shea CM. Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J. Bone Miner. Res. 2002, 17:221-30.
    • (2002) J. Bone Miner. Res. , vol.17 , pp. 221-230
    • Gerstenfeld, L.C.1    Cruceta, J.2    Shea, C.M.3
  • 39
    • 0142106382 scopus 로고    scopus 로고
    • Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone
    • Nurminskaya M, Magee C, Faverman L. Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev. Biol. 2003, 263:139-52.
    • (2003) Dev. Biol. , vol.263 , pp. 139-152
    • Nurminskaya, M.1    Magee, C.2    Faverman, L.3
  • 40
    • 0036137896 scopus 로고    scopus 로고
    • Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2
    • Champagne CM, Takebe J, Offenbacher S. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002, 30:26-31.
    • (2002) Bone. , vol.30 , pp. 26-31
    • Champagne, C.M.1    Takebe, J.2    Offenbacher, S.3
  • 41
    • 0033820369 scopus 로고    scopus 로고
    • Human myeloma cells promote the recruitment of osteoblast precursors: mediation by interleukin-6 and soluble interleukin-6 receptor
    • Karadag A, Scutt AM, Croucher PI. Human myeloma cells promote the recruitment of osteoblast precursors: mediation by interleukin-6 and soluble interleukin-6 receptor. J. Bone Miner. Res. 2000, 15:1935-43.
    • (2000) J. Bone Miner. Res. , vol.15 , pp. 1935-1943
    • Karadag, A.1    Scutt, A.M.2    Croucher, P.I.3
  • 42
    • 3042732307 scopus 로고    scopus 로고
    • Research in use of vascular endothelial cells to promote osteogenesis of marrow stromal cells
    • Zhou J, Wu J, Tang R. Research in use of vascular endothelial cells to promote osteogenesis of marrow stromal cells. J. Biomed. Eng. 2003, 20:447-50.
    • (2003) J. Biomed. Eng. , vol.20 , pp. 447-450
    • Zhou, J.1    Wu, J.2    Tang, R.3
  • 43
    • 42949140534 scopus 로고    scopus 로고
    • Murine osteoblasts regulate mesenchymal stem cells via wnt and cadherin pathways: mechanism depends on cell-cell contact mode
    • Wang Y, Volloch V, Pindrus MA. Murine osteoblasts regulate mesenchymal stem cells via wnt and cadherin pathways: mechanism depends on cell-cell contact mode. J. Tissue Eng. Regenerat. Med. 2007, 1:39-50.
    • (2007) J. Tissue Eng. Regenerat. Med. , vol.1 , pp. 39-50
    • Wang, Y.1    Volloch, V.2    Pindrus, M.A.3
  • 44
    • 0035113108 scopus 로고    scopus 로고
    • Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells
    • Buttery LDK, Bourne S, Xynos JD. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 2001, 7:89-99.
    • (2001) Tissue Eng. , vol.7 , pp. 89-99
    • Buttery, L.D.K.1    Bourne, S.2    Xynos, J.D.3
  • 45
    • 33746799697 scopus 로고    scopus 로고
    • Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with hepg2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering
    • Hwang YS, Randle WL, Bielby RC. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with hepg2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Eng. 2006, 12:1381-92.
    • (2006) Tissue Eng. , vol.12 , pp. 1381-1392
    • Hwang, Y.S.1    Randle, W.L.2    Bielby, R.C.3
  • 46
    • 0242438832 scopus 로고    scopus 로고
    • Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source
    • Declercq H, Van den Vreken N, De Maeyer E. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004, 25:757-68.
    • (2004) Biomaterials. , vol.25 , pp. 757-768
    • Declercq, H.1    Van den Vreken, N.2    De Maeyer, E.3
  • 47
    • 33646094209 scopus 로고    scopus 로고
    • An essential requirement for osteoclasts in refined bone-like tissue reconstruction in vitro
    • Han D, Zhang Q. An essential requirement for osteoclasts in refined bone-like tissue reconstruction in vitro. Med. Hypotheses. 2006, 67:75-8.
    • (2006) Med. Hypotheses. , vol.67 , pp. 75-78
    • Han, D.1    Zhang, Q.2
  • 48
    • 4444222857 scopus 로고    scopus 로고
    • Bmp-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold
    • Huang W, Carlsen B, Wulur I. Bmp-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Exp. Cell Res. 2004, 299:325-34.
    • (2004) Exp. Cell Res. , vol.299 , pp. 325-334
    • Huang, W.1    Carlsen, B.2    Wulur, I.3
  • 49
    • 0015804548 scopus 로고
    • Self-regulation of growth in three dimensions
    • Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J. Exp. Med. 1973, 138:745-53.
    • (1973) J. Exp. Med. , vol.138 , pp. 745-753
    • Folkman, J.1    Hochberg, M.2
  • 50
    • 0031573495 scopus 로고    scopus 로고
    • Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices
    • Kneser U, Kaufmann PM, Fiegel HC. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J. Biomed. Mater. Res. 1999, 47:494-503.
    • (1999) J. Biomed. Mater. Res. , vol.47 , pp. 494-503
    • Kneser, U.1    Kaufmann, P.M.2    Fiegel, H.C.3
  • 51
    • 0034609615 scopus 로고    scopus 로고
    • Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period
    • Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res. 2000, 51:376-82.
    • (2000) J. Biomed. Mater. Res. , vol.51 , pp. 376-382
    • Holy, C.E.1    Shoichet, M.S.2    Davies, J.E.3
  • 52
    • 0032144180 scopus 로고    scopus 로고
    • Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers
    • Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials. 1998, 19:1405-12.
    • (1998) Biomaterials. , vol.19 , pp. 1405-1412
    • Ishaug-Riley, S.L.1    Crane-Kruger, G.M.2    Yaszemski, M.J.3
  • 53
    • 1642618271 scopus 로고    scopus 로고
    • Bone regeneration via a mineral substrate and induced angiogenesis
    • Murphy WL, Simmons CA, Kaigler D. Bone regeneration via a mineral substrate and induced angiogenesis. J. Dent. Res. 2004, 83:204-10.
    • (2004) J. Dent. Res. , vol.83 , pp. 204-210
    • Murphy, W.L.1    Simmons, C.A.2    Kaigler, D.3
  • 54
    • 0038753865 scopus 로고    scopus 로고
    • Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats
    • Pelissier P, Villars F, Mathoulin-Pelissier S. Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. Plast. Reconstr. Surg. 2003, 111:1932-41.
    • (2003) Plast. Reconstr. Surg. , vol.111 , pp. 1932-1941
    • Pelissier, P.1    Villars, F.2    Mathoulin-Pelissier, S.3
  • 55
    • 0035988697 scopus 로고    scopus 로고
    • Composition options for tissue-engineered bone
    • Orban JM, Marra KG, Hollinger JO. Composition options for tissue-engineered bone. Tissue Eng. 2002, 8:529-39.
    • (2002) Tissue Eng. , vol.8 , pp. 529-539
    • Orban, J.M.1    Marra, K.G.2    Hollinger, J.O.3
  • 56
    • 67650438906 scopus 로고    scopus 로고
    • Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization
    • Santos MI, Unger RE, Sousa RA. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials. 2009, 30:4407-15.
    • (2009) Biomaterials. , vol.30 , pp. 4407-4415
    • Santos, M.I.1    Unger, R.E.2    Sousa, R.A.3
  • 58
  • 59
    • 50349088678 scopus 로고    scopus 로고
    • Endothelial cell colonization and angiogenic potential of combined nano-and micro-fibrous scaffolds for bone tissue engineering
    • Santos MI, Tuzlakoglu K, Fuchs S. Endothelial cell colonization and angiogenic potential of combined nano-and micro-fibrous scaffolds for bone tissue engineering. Biomaterials. 2008, 29:4306-13.
    • (2008) Biomaterials. , vol.29 , pp. 4306-4313
    • Santos, M.I.1    Tuzlakoglu, K.2    Fuchs, S.3
  • 60
    • 0026395108 scopus 로고
    • Early histological and ultrastructural changes in medullary fracture callus
    • Brighton CT. Early histological and ultrastructural changes in medullary fracture callus. J. Bone Joint Surg. Am. 1991, 73:832-47.
    • (1991) J. Bone Joint Surg. Am. , vol.73 , pp. 832-847
    • Brighton, C.T.1
  • 61
    • 0029043575 scopus 로고
    • Relationships between endothelial cells, pericytes, and osteoblasts during bone formation in the sheep femur following implantation of tricalciumphosphate-ceramic
    • Decker B, Bartels H, Decker S. Relationships between endothelial cells, pericytes, and osteoblasts during bone formation in the sheep femur following implantation of tricalciumphosphate-ceramic. Anat. Rec. 1995, 242:310-20.
    • (1995) Anat. Rec. , vol.242 , pp. 310-320
    • Decker, B.1    Bartels, H.2    Decker, S.3
  • 62
    • 0022589091 scopus 로고
    • Endothelial cells in culture synthesize a potent bone cell active mitogen
    • Guenther HL. Endothelial cells in culture synthesize a potent bone cell active mitogen. Endocrinology. 1986, 119:193-201.
    • (1986) Endocrinology. , vol.119 , pp. 193-201
    • Guenther, H.L.1
  • 63
    • 0029132096 scopus 로고
    • Microvessel endothelial cells and pericytes increase proliferation and repress osteoblast phenotypic markers in rat calvarial bone cell cultures
    • Jones AR, Clark CC, Brighton CT. Microvessel endothelial cells and pericytes increase proliferation and repress osteoblast phenotypic markers in rat calvarial bone cell cultures. J. Orthop. Res. 1995, 13:553-61.
    • (1995) J. Orthop. Res. , vol.13 , pp. 553-561
    • Jones, A.R.1    Clark, C.C.2    Brighton, C.T.3
  • 64
    • 0022826648 scopus 로고
    • Morphological and histochemical events during first bone formation in embryonic chick limbs
    • Pechak DG, Kujawa MJ, Caplan AI. Morphological and histochemical events during first bone formation in embryonic chick limbs. Bone. 1986, 7:441-58.
    • (1986) Bone. , vol.7 , pp. 441-458
    • Pechak, D.G.1    Kujawa, M.J.2    Caplan, A.I.3
  • 65
    • 0025040819 scopus 로고
    • Promotion of calvarial cell osteogenesis by endothelial cells
    • Villanueva JE, Nimni ME. Promotion of calvarial cell osteogenesis by endothelial cells. J. Bone Miner. Res. 1990, 5:733-9.
    • (1990) J. Bone Miner. Res. , vol.5 , pp. 733-739
    • Villanueva, J.E.1    Nimni, M.E.2
  • 66
    • 0033793647 scopus 로고    scopus 로고
    • Effect of human endothelial cells on human bone marrow stromal cell phenotype: Role of vegf
    • Villars F, Bordenave L, Bareille R. Effect of human endothelial cells on human bone marrow stromal cell phenotype: Role of vegf. J. Cell. Biochem. 2000, 79:672-85.
    • (2000) J. Cell. Biochem. , vol.79 , pp. 672-685
    • Villars, F.1    Bordenave, L.2    Bareille, R.3
  • 67
    • 0036083738 scopus 로고    scopus 로고
    • Effect of huvec on human osteoprogenitor cell differentiation needs heterotypic gap junction communication
    • Villars F, Guillotin B, Amedee T. Effect of huvec on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. Cell Physiol. 2002, 282:775-85.
    • (2002) Am. J. Physiol. Cell Physiol. , vol.282 , pp. 775-785
    • Villars, F.1    Guillotin, B.2    Amedee, T.3
  • 68
    • 4444351450 scopus 로고    scopus 로고
    • Human primary endothelial cells stimulate human osteoprogenitor cell differentiation
    • Guillotin B, Bourget C, Remy-Zolgadri M. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol. Biochem. 2004, 14:325-32.
    • (2004) Cell Physiol. Biochem. , vol.14 , pp. 325-332
    • Guillotin, B.1    Bourget, C.2    Remy-Zolgadri, M.3
  • 69
    • 33745618179 scopus 로고    scopus 로고
    • Human endothelial cells inhibit bmsc differentiation into mature osteoblasts in vitro by interfering with osterix expression
    • Thomas Meury, Sophie Verrier, Alini M. Human endothelial cells inhibit bmsc differentiation into mature osteoblasts in vitro by interfering with osterix expression. J. Cell. Biochem. 2006, 98:992-1006.
    • (2006) J. Cell. Biochem. , vol.98 , pp. 992-1006
    • Thomas, M.1    Sophie, V.2    Alini, M.3
  • 70
    • 42749095897 scopus 로고    scopus 로고
    • Notch1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells
    • Bai S, Kopan R, Zou W. Notch1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J. Biol. Chem. 2008, 283:6509-18.
    • (2008) J. Biol. Chem. , vol.283 , pp. 6509-6518
    • Bai, S.1    Kopan, R.2    Zou, W.3
  • 71
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003, 423:337-42.
    • (2003) Nature. , vol.423 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 72
    • 0034455103 scopus 로고    scopus 로고
    • Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis 1
    • Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis 1. Endocr. Rev. 2000, 21:115-37.
    • (2000) Endocr. Rev. , vol.21 , pp. 115-137
    • Manolagas, S.C.1
  • 73
    • 9244252016 scopus 로고    scopus 로고
    • The molecular triad opg/rank/rankl: involvement in the orchestration of pathophysiological bone remodeling
    • Theoleyre S, Wittrant Y, Tat SK. The molecular triad opg/rank/rankl: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004, 15:457-75.
    • (2004) Cytokine Growth Factor Rev. , vol.15 , pp. 457-475
    • Theoleyre, S.1    Wittrant, Y.2    Tat, S.K.3
  • 74
    • 30644469500 scopus 로고    scopus 로고
    • Rankl-rank signaling in osteoclastogenesis and bone disease
    • Wada T, Nakashima T, Hiroshi N. Rankl-rank signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 2006, 12:17-25.
    • (2006) Trends Mol. Med. , vol.12 , pp. 17-25
    • Wada, T.1    Nakashima, T.2    Hiroshi, N.3
  • 75
    • 15544373018 scopus 로고    scopus 로고
    • Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone
    • Dai XM, Zong XH, Akhter MP. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J. Bone Miner. Res. 2004, 19:1441-51.
    • (2004) J. Bone Miner. Res. , vol.19 , pp. 1441-1451
    • Dai, X.M.1    Zong, X.H.2    Akhter, M.P.3
  • 76
    • 28544443834 scopus 로고    scopus 로고
    • Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice
    • Sakagami N, Amizuka N, Li M. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005, 36:688-95.
    • (2005) Micron. , vol.36 , pp. 688-695
    • Sakagami, N.1    Amizuka, N.2    Li, M.3
  • 77
    • 34249751708 scopus 로고    scopus 로고
    • Are nonresorbing osteoclasts sources of bone anabolic activity
    • Karsdal MA, Martin TJ, Bollerslev J. Are nonresorbing osteoclasts sources of bone anabolic activity. J. Bone Miner. Res. 2007, 22:487-94.
    • (2007) J. Bone Miner. Res. , vol.22 , pp. 487-494
    • Karsdal, M.A.1    Martin, T.J.2    Bollerslev, J.3
  • 79
    • 33746528704 scopus 로고    scopus 로고
    • Bidirectional ephrinb2-ephb4 signaling controls bone homeostasis
    • Zhao C, Irie N, Takada Y. Bidirectional ephrinb2-ephb4 signaling controls bone homeostasis. Cell Metab. 2006, 4:111-21.
    • (2006) Cell Metab. , vol.4 , pp. 111-121
    • Zhao, C.1    Irie, N.2    Takada, Y.3
  • 80
    • 27744544488 scopus 로고    scopus 로고
    • Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro
    • Jiang J, Nicoll SB, Lu HH. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 2005, 338:762-70.
    • (2005) Biochem. Biophys. Res. Commun. , vol.338 , pp. 762-770
    • Jiang, J.1    Nicoll, S.B.2    Lu, H.H.3
  • 81
    • 77449134755 scopus 로고    scopus 로고
    • Regression and persistence: remodelling in a tissue engineered axial vascular assembly
    • Polykandriotis E, Euler S, Arkudas A. Regression and persistence: remodelling in a tissue engineered axial vascular assembly. J. Cell. Mol. Med. 2009, 13:4166-75.
    • (2009) J. Cell. Mol. Med. , vol.13 , pp. 4166-4175
    • Polykandriotis, E.1    Euler, S.2    Arkudas, A.3
  • 82
    • 33947320098 scopus 로고    scopus 로고
    • Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts
    • Arkudas A, Beier JP, Heidner K. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007, 13:1549-60.
    • (2007) Tissue Eng. , vol.13 , pp. 1549-1560
    • Arkudas, A.1    Beier, J.P.2    Heidner, K.3
  • 83
    • 33746745292 scopus 로고    scopus 로고
    • Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop
    • Kneser U, Polykandriotis E, Ohnolz J. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006, 12:1721-31.
    • (2006) Tissue Eng. , vol.12 , pp. 1721-1731
    • Kneser, U.1    Polykandriotis, E.2    Ohnolz, J.3
  • 84
    • 35348883223 scopus 로고    scopus 로고
    • Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells
    • Fuchs S, Hofmann A, Kirkpatrick CJ. Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 2007, 13:2577-88.
    • (2007) Tissue Eng. , vol.13 , pp. 2577-2588
    • Fuchs, S.1    Hofmann, A.2    Kirkpatrick, C.J.3
  • 85
    • 49349091231 scopus 로고    scopus 로고
    • The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds
    • Hofmann A, Ritz U, Verrier S. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials. 2008, 29:4217-26.
    • (2008) Biomaterials. , vol.29 , pp. 4217-4226
    • Hofmann, A.1    Ritz, U.2    Verrier, S.3
  • 86
    • 56749102789 scopus 로고    scopus 로고
    • Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds
    • Fuchs S, Ghanaati S, Orth C. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials. 2008, 30:526-34.
    • (2008) Biomaterials. , vol.30 , pp. 526-534
    • Fuchs, S.1    Ghanaati, S.2    Orth, C.3
  • 87
    • 33750610353 scopus 로고    scopus 로고
    • Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct
    • Rouwkema J, Boer JD, Blitterswijk CAV. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006, 12:2685-93.
    • (2006) Tissue Eng. , vol.12 , pp. 2685-2693
    • Rouwkema, J.1    Boer, J.D.2    Blitterswijk, C.A.V.3
  • 88
    • 25844431654 scopus 로고    scopus 로고
    • Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts
    • Stahl A, Wu X, Wenger A. Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett. 2005, 579:5338-42.
    • (2005) FEBS Lett. , vol.579 , pp. 5338-5342
    • Stahl, A.1    Wu, X.2    Wenger, A.3
  • 89
    • 34447249326 scopus 로고    scopus 로고
    • Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials
    • Unger RE, Sartoris A, Peters K. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007, 28:3965-76.
    • (2007) Biomaterials. , vol.28 , pp. 3965-3976
    • Unger, R.E.1    Sartoris, A.2    Peters, K.3
  • 90
    • 8544255751 scopus 로고    scopus 로고
    • Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering
    • Wenger A, Stahl A, Weber H. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 2004, 10:1536-47.
    • (2004) Tissue Eng. , vol.10 , pp. 1536-1547
    • Wenger, A.1    Stahl, A.2    Weber, H.3
  • 91
    • 42649090791 scopus 로고    scopus 로고
    • Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering
    • Kyriakidou K, Lucarini G, Zizzi A. Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering. J. Bioact. Compat. Pol. 2008, 23:227-43.
    • (2008) J. Bioact. Compat. Pol. , vol.23 , pp. 227-243
    • Kyriakidou, K.1    Lucarini, G.2    Zizzi, A.3
  • 92
    • 56749175049 scopus 로고    scopus 로고
    • Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization
    • Yu H, VandeVord PJ, Mao L. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials. 2008, 30:508-17.
    • (2008) Biomaterials. , vol.30 , pp. 508-517
    • Yu, H.1    VandeVord, P.J.2    Mao, L.3
  • 93
    • 49149100609 scopus 로고    scopus 로고
    • Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells
    • Yu H, VandeVord PJ, Gong W. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J. Orthop. Res. 2008, 26:1147-52.
    • (2008) J. Orthop. Res. , vol.26 , pp. 1147-1152
    • Yu, H.1    VandeVord, P.J.2    Gong, W.3
  • 94
    • 33746138204 scopus 로고    scopus 로고
    • Transplanted endothelial cells enhance orthotopic bone regeneration
    • Kaigler D, Krebsbach PH, Wang Z. Transplanted endothelial cells enhance orthotopic bone regeneration. J. Dent. Res 2006, 85:633.
    • (2006) J. Dent. Res , vol.85 , pp. 633
    • Kaigler, D.1    Krebsbach, P.H.2    Wang, Z.3
  • 95
    • 16344377895 scopus 로고    scopus 로고
    • Endothelial cell modulation of bone marrow stromal cell osteogenic potential
    • Kaigler D, Krebsbach PH, West ER. Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J. 2005, 19:665-7.
    • (2005) FASEB J. , vol.19 , pp. 665-667
    • Kaigler, D.1    Krebsbach, P.H.2    West, E.R.3
  • 97
    • 39149084409 scopus 로고    scopus 로고
    • Osteochondral defects: present situation and tissue engineering approaches
    • Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J. Tissue Eng. Regenerat. Med. 2007, 1:261-73.
    • (2007) J. Tissue Eng. Regenerat. Med. , vol.1 , pp. 261-273
    • Mano, J.F.1    Reis, R.L.2
  • 98
    • 33748929635 scopus 로고    scopus 로고
    • Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells
    • Oliveira JM, Rodrigues MT, Silva SS. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006, 27:6123-37.
    • (2006) Biomaterials. , vol.27 , pp. 6123-6137
    • Oliveira, J.M.1    Rodrigues, M.T.2    Silva, S.S.3
  • 99
    • 0042827798 scopus 로고    scopus 로고
    • Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
    • Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 2003, 9:103-12.
    • (2003) Tissue Eng. , vol.9 , pp. 103-112
    • Cao, T.1    Ho, K.H.2    Teoh, S.H.3
  • 100
    • 23244433365 scopus 로고    scopus 로고
    • Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors
    • Mahmoudifar N, Doran PM. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials. 2005, 26:7012-24.
    • (2005) Biomaterials. , vol.26 , pp. 7012-7024
    • Mahmoudifar, N.1    Doran, P.M.2
  • 101
    • 0345733804 scopus 로고    scopus 로고
    • Osteoblast and chondrocyte interactions during coculture on scaffolds
    • Spalazzi JP, Dionisio KL, Jiang J. Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 2003, 22:27-34.
    • (2003) IEEE Eng. Med. Biol. Mag. , vol.22 , pp. 27-34
    • Spalazzi, J.P.1    Dionisio, K.L.2    Jiang, J.3
  • 102
    • 33947262218 scopus 로고    scopus 로고
    • Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants
    • Drees P, Eckardt A, Gay RE. Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nat. Clin. Pract. Rheumatol. 2007, 3:165-71.
    • (2007) Nat. Clin. Pract. Rheumatol. , vol.3 , pp. 165-171
    • Drees, P.1    Eckardt, A.2    Gay, R.E.3
  • 103
    • 0033814272 scopus 로고    scopus 로고
    • Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles
    • Green TR, Fisher J, Matthews JB. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J. Biomed. Mater. Res. 2000, 53:490-7.
    • (2000) J. Biomed. Mater. Res. , vol.53 , pp. 490-497
    • Green, T.R.1    Fisher, J.2    Matthews, J.B.3
  • 104
    • 0032971714 scopus 로고    scopus 로고
    • Signaling pathways for tumor necrosis factor-a and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro
    • Nakashima Y, Sun D, Trindade MCD. Signaling pathways for tumor necrosis factor-a and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J. Bone Joint Surg. 1999, 81:603-15.
    • (1999) J. Bone Joint Surg. , vol.81 , pp. 603-615
    • Nakashima, Y.1    Sun, D.2    Trindade, M.C.D.3
  • 105
    • 33644870387 scopus 로고    scopus 로고
    • Alumina particles influence the interactions of cocultured osteoblasts and macrophages
    • Rodrigo A, Vallés G, Saldana L. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J. Orthop. Res. 2006, 24:46-54.
    • (2006) J. Orthop. Res. , vol.24 , pp. 46-54
    • Rodrigo, A.1    Vallés, G.2    Saldana, L.3
  • 106
    • 40649128716 scopus 로고    scopus 로고
    • Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles
    • Vallés G, Gil-Garay E, Munuera L. Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials. 2008, 29:2326-35.
    • (2008) Biomaterials. , vol.29 , pp. 2326-2335
    • Vallés, G.1    Gil-Garay, E.2    Munuera, L.3
  • 107
    • 16244411964 scopus 로고    scopus 로고
    • The inflammatory potential of biphasic calcium phosphate granules in osteoblast/ macrophage co-culture
    • Curran JM, Gallagher JA, Hunt JA. The inflammatory potential of biphasic calcium phosphate granules in osteoblast/ macrophage co-culture. Biomaterials. 2005, 26:5313-20.
    • (2005) Biomaterials. , vol.26 , pp. 5313-5320
    • Curran, J.M.1    Gallagher, J.A.2    Hunt, J.A.3
  • 108
    • 33646553866 scopus 로고    scopus 로고
    • In vitro ossification and remodeling of mineralized collagen i scaffolds
    • Domaschke H, Gelinsky M, Burmeister B. In vitro ossification and remodeling of mineralized collagen i scaffolds. Tissue Eng. 2006, 12:949-58.
    • (2006) Tissue Eng. , vol.12 , pp. 949-958
    • Domaschke, H.1    Gelinsky, M.2    Burmeister, B.3
  • 109
    • 1042277977 scopus 로고    scopus 로고
    • Osteoclastogenesis on tissue-engineered bone
    • Nakagawa K, Abukawa H, Shin MY. Osteoclastogenesis on tissue-engineered bone. Tissue Eng. 2004, 10:93-100.
    • (2004) Tissue Eng. , vol.10 , pp. 93-100
    • Nakagawa, K.1    Abukawa, H.2    Shin, M.Y.3
  • 110
    • 37349096421 scopus 로고    scopus 로고
    • In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly (d, l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds
    • Kim S, Kim SS, Lee SH. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly (d, l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials. 2008, 29:1043-53.
    • (2008) Biomaterials. , vol.29 , pp. 1043-1053
    • Kim, S.1    Kim, S.S.2    Lee, S.H.3
  • 111
    • 70349329669 scopus 로고    scopus 로고
    • Translating tissue engineering technology platforms into cancer research
    • Hutmacher DW, Horch RE, Loessner D. Translating tissue engineering technology platforms into cancer research. J. Cell. Mol. Med. 2009, 13:1417-27.
    • (2009) J. Cell. Mol. Med. , vol.13 , pp. 1417-1427
    • Hutmacher, D.W.1    Horch, R.E.2    Loessner, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.