-
1
-
-
39749191084
-
Heart disease and stroke statistics-2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
-
Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-e146.
-
(2008)
Circulation
, vol.117
-
-
Rosamond, W.1
Flegal, K.2
Furie, K.3
Go, A.4
Greenlund, K.5
Haase, N.6
Hailpern, S.M.7
Ho, M.8
Howard, V.9
Kissela, B.10
Kittner, S.11
Lloyd-Jones, D.12
McDermott, M.13
Meigs, J.14
Moy, C.15
Nichol, G.16
O'Donnell, C.17
Roger, V.18
Sorlie, P.19
Steinberger, J.20
Thom, T.21
Wilson, M.22
Hong, Y.23
more..
-
2
-
-
34047132909
-
Rebuilding the coronary vasculature: Hedgehog as a new candidate for pharmacologic revascularization
-
Lavine KJ, Ornitz DM. Rebuilding the coronary vasculature: hedgehog as a new candidate for pharmacologic revascularization. Trends Cardiovasc Med. 2007;17:77-83.
-
(2007)
Trends Cardiovasc. Med.
, vol.17
, pp. 77-83
-
-
Lavine, K.J.1
Ornitz, D.M.2
-
3
-
-
18744396999
-
Cellular and molecular mechanisms of coronary vessel development
-
Mu H, Ohashi R, Lin P, Yao Q, Chen C. Cellular and molecular mechanisms of coronary vessel development. Vasc Med. 2005;10:37-44.
-
(2005)
Vasc. Med.
, vol.10
, pp. 37-44
-
-
Mu, H.1
Ohashi, R.2
Lin, P.3
Yao, Q.4
Chen, C.5
-
5
-
-
28744445970
-
Formation of the coronary vasculature during development
-
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273-284.
-
(2005)
Angiogenesis
, vol.8
, pp. 273-284
-
-
Tomanek, R.J.1
-
7
-
-
0032518298
-
Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart
-
Dettman RW, Denetclaw W, Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998;193:169-181.
-
(1998)
Dev. Biol.
, vol.193
, pp. 169-181
-
-
Dettman, R.W.1
Denetclaw, W.2
Ordahl, C.P.3
Bristow, J.4
-
8
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
-
Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174:221-232.
-
(1996)
Dev. Biol.
, vol.174
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
9
-
-
0019385897
-
The origin of the epicardium and the embryonic myocardial circulation in the mouse
-
Viragh S, Challice CE. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec. 1981;201:157-168.
-
(1981)
Anat. Rec.
, vol.201
, pp. 157-168
-
-
Viragh, S.1
Challice, C.E.2
-
10
-
-
12244298152
-
Origin of coronary endothelial cells from epicardial mesothelium in avian embryos
-
Pérez-Pomares JM, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002;46:1005-1013.
-
(2002)
Int. J. Dev. Biol.
, vol.46
, pp. 1005-1013
-
-
Pérez-Pomares, J.M.1
Carmona, R.2
González-Iriarte, M.3
Atencia, G.4
Wessels, A.5
Muñoz-Chápuli, R.6
-
11
-
-
34247581308
-
The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart
-
Wilting J, Buttler K, Schulte I, Papoutsi M, Schweigerer L, Manner J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol. 2007;305:451-459.
-
(2007)
Dev. Biol.
, vol.305
, pp. 451-459
-
-
Wilting, J.1
Buttler, K.2
Schulte, I.3
Papoutsi, M.4
Schweigerer, L.5
Manner, J.6
-
12
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104-108.
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.L.1
Martin, J.C.2
Sun, Y.3
Cui, L.4
Wang, L.5
Ouyang, K.6
Yang, L.7
Bu, L.8
Liang, X.9
Zhang, X.10
Stallcup, W.B.11
Denton, C.P.12
McCulloch, A.13
Chen, J.14
Evans, S.M.15
-
13
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109-113.
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
Wu, S.M.4
Domian, I.5
Rivera-Feliciano, J.6
Jiang, D.7
Von Gise, A.8
Ikeda, S.9
Chien, K.R.10
Pu, W.T.11
-
14
-
-
43449110115
-
Molecular and developmental biology of the hemangioblast
-
Xiong J. Molecular and developmental biology of the hemangioblast. Dev Dyn. 2008;237:1218-1231.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 1218-1231
-
-
Xiong, J.1
-
15
-
-
33646155950
-
VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo
-
Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ Res. 2006;98:947-953.
-
(2006)
Circ. Res.
, vol.98
, pp. 947-953
-
-
Tomanek, R.J.1
Ishii, Y.2
Holifield, J.S.3
Sjogren, C.L.4
Hansen, H.K.5
Mikawa, T.6
-
16
-
-
58149139571
-
Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development
-
Lavine KJ, Long F, Choi K, Smith C, Ornitz DM. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development. 2008;135:3161-3171.
-
(2008)
Development
, vol.135
, pp. 3161-3171
-
-
Lavine, K.J.1
Long, F.2
Choi, K.3
Smith, C.4
Ornitz, D.M.5
-
17
-
-
17444446973
-
Development of the coronary arteries in a murine model of transposition of great arteries
-
González-Iriarte M, Carmona R, Pérez-Pomares JM, Macías D, Costell M, Muñoz-Chápuli R. Development of the coronary arteries in a murine model of transposition of great arteries. J Mol Cell Cardiol. 2003;35:795-802.
-
(2003)
J. Mol. Cell. Cardiol.
, vol.35
, pp. 795-802
-
-
González-Iriarte, M.1
Carmona, R.2
Pérez-Pomares, J.M.3
Macías, D.4
Costell, M.5
Muñoz-Chápuli, R.6
-
18
-
-
0034711517
-
Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation
-
Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000;87:969-971.
-
(2000)
Circ. Res.
, vol.87
, pp. 969-971
-
-
Gittenberger-De Groot, A.C.1
Vrancken Peeters, M.P.2
Bergwerff, M.3
Mentink, M.M.4
Poelmann, R.E.5
-
19
-
-
0028955748
-
Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development
-
Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development. 1995;121:549-560.
-
(1995)
Development
, vol.121
, pp. 549-560
-
-
Yang, J.T.1
Rayburn, H.2
Hynes, R.O.3
-
20
-
-
0028952534
-
Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice
-
Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 1995;121:489-503.
-
(1995)
Development
, vol.121
, pp. 489-503
-
-
Kwee, L.1
Baldwin, H.S.2
Shen, H.M.3
Stewart, C.L.4
Buck, C.5
Buck, C.A.6
Labow, M.A.7
-
21
-
-
0033005665
-
YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis
-
Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999;126:1845-1857.
-
(1999)
Development
, vol.126
, pp. 1845-1857
-
-
Moore, A.W.1
McInnes, L.2
Kreidberg, J.3
Hastie, N.D.4
Schedl, A.5
-
22
-
-
33846003850
-
The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the alpha4integrin gene
-
Kirschner KM, Wagner N, Wagner KD, Wellmann S, Scholz H. The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the alpha4integrin gene. J Biol Chem. 2006;281:31930-31939.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 31930-31939
-
-
Kirschner, K.M.1
Wagner, N.2
Wagner, K.D.3
Wellmann, S.4
Scholz, H.5
-
23
-
-
0037182578
-
Dual functions ofα4/31 integrin in epicardial development: Initial migration and long-term attachment
-
Sengbusch JK, He W, Pinco KA, Yang JT. Dual functions ofα4/31 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002;157:873-882.
-
(2002)
J. Cell. Biol.
, vol.157
, pp. 873-882
-
-
Sengbusch, J.K.1
He, W.2
Pinco, K.A.3
Yang, J.T.4
-
24
-
-
27644504635
-
Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms' tumor transcription factor Wt1
-
Wagner N, Wagner KD, Theres H, Englert C, Schedl A, Scholz H. Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms' tumor transcription factor Wt1. Genes Dev. 2005;19:2631-2642.
-
(2005)
Genes Dev.
, vol.19
, pp. 2631-2642
-
-
Wagner, N.1
Wagner, K.D.2
Theres, H.3
Englert, C.4
Schedl, A.5
Scholz, H.6
-
25
-
-
35448946457
-
Coronary vessel development is dependent on the type III transforming growth factor beta receptor
-
Compton LA, Potash DA, Brown C, Barnett JV. Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circ Res. 2007;101:784-791.
-
(2007)
Circ. Res.
, vol.101
, pp. 784-791
-
-
Compton, L.A.1
Potash, D.A.2
Brown, C.3
Barnett, J.V.4
-
26
-
-
40849088002
-
Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: Correlation with abnormal epicardial development
-
Mahtab EA, Wijffels MC, Van den Akker NM, Hahurij ND, Lie-Venema H, Wisse LJ, Deruiter M, Uhrin P, Zaujec J, Binder BR, Schalij MJ, Poelmann R, Gittenberger-De Groot A. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008;237:847-857.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 847-857
-
-
Mahtab, E.A.1
Wijffels, M.C.2
Van Den Akker, N.M.3
Hahurij, N.D.4
Lie-Venema, H.5
Wisse, L.J.6
Deruiter, M.7
Uhrin, P.8
Zaujec, J.9
Binder, B.R.10
Schalij, M.J.11
Poelmann, R.12
Gittenberger-De Groot, A.13
-
27
-
-
52049084102
-
Signaling via the Tgf-beta type I receptor Alk5 in heart development
-
Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol. 2008;322:208-218.
-
(2008)
Dev. Biol.
, vol.322
, pp. 208-218
-
-
Sridurongrit, S.1
Larsson, J.2
Schwartz, R.3
Ruiz-Lozano, P.4
Kaartinen, V.5
-
28
-
-
29444451293
-
Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation
-
Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X, Burch J, Kubalak SW, Kaliman P, Belmonte JC, Chien K, Ruiz-Lozano P. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci U S A. 2005;102:18455-18460.
-
(2005)
Proc. Natl. Acad. Sci. U S A
, vol.102
, pp. 18455-18460
-
-
Merki, E.1
Zamora, M.2
Raya, A.3
Kawakami, Y.4
Wang, J.5
Zhang, X.6
Burch, J.7
Kubalak, S.W.8
Kaliman, P.9
Belmonte, J.C.10
Chien, K.11
Ruiz-Lozano, P.12
-
29
-
-
0037205320
-
Cardiomyocyte cell cycle regulation
-
Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044-1054.
-
(2002)
Circ. Res.
, vol.90
, pp. 1044-1054
-
-
Pasumarthi, K.B.1
Field, L.J.2
-
30
-
-
0022353776
-
Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo
-
Heine UI, Roberts AB, Munoz EF, Roche NS, Sporn MB. Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;50:135-152.
-
(1985)
Virchows Arch. B. Cell. Pathol. Incl Mol. Pathol.
, vol.50
, pp. 135-152
-
-
Heine, U.I.1
Roberts, A.B.2
Munoz, E.F.3
Roche, N.S.4
Sporn, M.B.5
-
31
-
-
0033557907
-
Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation
-
Kostetskii I, Jiang Y, Kostetskaia E, Yuan S, Evans T, Zile M. Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation. Dev Biol. 1999;206:206-218.
-
(1999)
Dev. Biol.
, vol.206
, pp. 206-218
-
-
Kostetskii, I.1
Jiang, Y.2
Kostetskaia, E.3
Yuan, S.4
Evans, T.5
Zile, M.6
-
32
-
-
0031937001
-
Vitamin A and embryonic development: An overview
-
Zile MH. Vitamin A and embryonic development: an overview. J Nutr. 1998;128:455S-458S.
-
(1998)
J. Nutr.
, vol.128
-
-
Zile, M.H.1
-
33
-
-
0032958632
-
Embryonic retinoic acid synthesis is essential for early mouse post-implantation development
-
Niederreither K, Subbarayan V, Dolle P, Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21:444-448.
-
(1999)
Nat. Genet.
, vol.21
, pp. 444-448
-
-
Niederreither, K.1
Subbarayan, V.2
Dolle, P.3
Chambon, P.4
-
34
-
-
33947176562
-
Retinoic acid and the heart
-
Pan J, Baker KM. Retinoic acid and the heart. Vitam Horm. 2007;75:257-283.
-
(2007)
Vitam Horm
, vol.75
, pp. 257-283
-
-
Pan, J.1
Baker, K.M.2
-
35
-
-
0037443954
-
Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation
-
Stuckmann I, Evans S, Lassar AB. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol. 2003;255:334-349.
-
(2003)
Dev. Biol.
, vol.255
, pp. 334-349
-
-
Stuckmann, I.1
Evans, S.2
Lassar, A.B.3
-
36
-
-
0028175195
-
RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis
-
Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994;8:1007-1018.
-
(1994)
Genes Dev.
, vol.8
, pp. 1007-1018
-
-
Sucov, H.M.1
Dyson, E.2
Gumeringer, C.L.3
Price, J.4
Chien, K.R.5
Evans, R.M.6
-
37
-
-
0031799964
-
Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis
-
Chen J, Kubalak SW, Chien KR. Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development. 1998;125:1943-1949.
-
(1998)
Development
, vol.125
, pp. 1943-1949
-
-
Chen, J.1
Kubalak, S.W.2
Chien, K.R.3
-
38
-
-
0032824560
-
Inactivation of erythropoietin leads to defects in cardiac morphogenesis
-
Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597-3605.
-
(1999)
Development
, vol.126
, pp. 3597-3605
-
-
Wu, H.1
Lee, S.H.2
Gao, J.3
Liu, X.4
Iruela-Arispe, M.L.5
-
39
-
-
7544221404
-
The role of erythropoietin in regulating angiogenesis
-
Kertesz N, Wu J, Chen TH, Sucov HM, Wu H. The role of erythropoietin in regulating angiogenesis. Dev Biol. 2004;276:101-110.
-
(2004)
Dev. Biol.
, vol.276
, pp. 101-110
-
-
Kertesz, N.1
Wu, J.2
Chen, T.H.3
Sucov, H.M.4
Wu, H.5
-
40
-
-
0030578428
-
The wingless signaling pathway is directly involved in Drosophila heart development
-
Park M, Wu X, Golden K, Axelrod JD, Bodmer R. The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol. 1996;177:104-116.
-
(1996)
Dev. Biol.
, vol.177
, pp. 104-116
-
-
Park, M.1
Wu, X.2
Golden, K.3
Axelrod, J.D.4
Bodmer, R.5
-
41
-
-
13544259725
-
Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus
-
Garriock RJ, D'Agostino SL, Pilcher KC, Krieg PA. Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus. Dev Biol. 2005;279:179-192.
-
(2005)
Dev. Biol.
, vol.279
, pp. 179-192
-
-
Garriock, R.J.1
D'Agostino, S.L.2
Pilcher, K.C.3
Krieg, P.A.4
-
42
-
-
0036931633
-
Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure
-
Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien K, Sussman DJ, Wynshaw-Boris A. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development. 2002;129:5827-5838.
-
(2002)
Development
, vol.129
, pp. 5827-5838
-
-
Hamblet, N.S.1
Lijam, N.2
Ruiz-Lozano, P.3
Wang, J.4
Yang, Y.5
Luo, Z.6
Mei, L.7
Chien, K.8
Sussman, D.J.9
Wynshaw-Boris, A.10
-
43
-
-
33845802651
-
Noncanonical Wnt signaling through G proteinlinked PKCdelta activation promotes bone formation
-
Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F. Noncanonical Wnt signaling through G proteinlinked PKCdelta activation promotes bone formation. Dev Cell. 2007;12:113-127.
-
(2007)
Dev. Cell.
, vol.12
, pp. 113-127
-
-
Tu, X.1
Joeng, K.S.2
Nakayama, K.I.3
Nakayama, K.4
Rajagopal, J.5
Carroll, T.J.6
McMahon, A.P.7
Long, F.8
-
44
-
-
33646241997
-
Purified Wnt5a protein activates or inhibits betacatenin-TCF signaling depending on receptor context
-
Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits betacatenin-TCF signaling depending on receptor context. Plos Biol. 2006;4: e115.
-
(2006)
Plos Biol.
, vol.4
-
-
Mikels, A.J.1
Nusse, R.2
-
45
-
-
33749435799
-
The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart
-
Brade T, Männer J, Kühl M. The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res. 2006;72:198-209.
-
(2006)
Cardiovasc. Res.
, vol.72
, pp. 198-209
-
-
Brade, T.1
Männer, J.2
Kühl, M.3
-
46
-
-
36749019685
-
Epicardium-derived progenitor cells require beta-catenin for coronary artery formation
-
Zamora M, Männer J, Ruiz-Lozano P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A. 2007;104:18109-18114.
-
(2007)
Proc. Natl. Acad. Sci. U S A
, vol.104
, pp. 18109-18114
-
-
Zamora, M.1
Männer, J.2
Ruiz-Lozano, P.3
-
47
-
-
33750295369
-
VCAM-1 inhibits TGFbeta stimulated epithelial-mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells
-
Dokic D, Dettman RW. VCAM-1 inhibits TGFbeta stimulated epithelial-mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells. Dev Biol. 2006;299:489-504.
-
(2006)
Dev. Biol.
, vol.299
, pp. 489-504
-
-
Dokic, D.1
Dettman, R.W.2
-
48
-
-
0038678511
-
Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton
-
Molin DG, Bartram U, Van der Heiden K, Van Iperen L, Speer C, Hierck B, Poelmann R, Gittenberger-De-Groot A. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn. 2003;227:431-444.
-
(2003)
Dev. Dyn.
, vol.227
, pp. 431-444
-
-
Molin, D.G.1
Bartram, U.2
Van Der Heiden, K.3
Van Iperen, L.4
Speer, C.5
Hierck, B.6
Poelmann, R.7
Gittenberger-De-Groot, A.8
-
49
-
-
33644989417
-
Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium
-
Olivey HE, Mundell NA, Austin AF, Barnett J. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006;235:50-59.
-
(2006)
Dev. Dyn.
, vol.235
, pp. 50-59
-
-
Olivey, H.E.1
Mundell, N.A.2
Austin, A.F.3
Barnett, J.4
-
50
-
-
33644975212
-
Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells
-
Compton LA, Potash DA, Mundell NA, Barnett JV. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006;235:82-93.
-
(2006)
Dev. Dyn.
, vol.235
, pp. 82-93
-
-
Compton, L.A.1
Potash, D.A.2
Mundell, N.A.3
Barnett, J.V.4
-
51
-
-
39749130550
-
Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta
-
Austin AF, Compton LA, Love JD, Brown C, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn. 2008;237:366-376.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 366-376
-
-
Austin, A.F.1
Compton, L.A.2
Love, J.D.3
Brown, C.4
Barnett, J.V.5
-
52
-
-
0026799402
-
Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease
-
Schull MM, Ormsby I, Kier, AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel B, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693-699.
-
(1992)
Nature
, vol.359
, pp. 693-699
-
-
Schull, M.M.1
Ormsby, I.2
Kier, A.B.3
Pawlowski, S.4
Diebold, R.J.5
Yin, M.6
Allen, R.7
Sidman, C.8
Proetzel, B.9
Calvin, D.10
Annunziata, N.11
Doetschman, T.12
-
53
-
-
0028806184
-
Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction
-
Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995;11:415-421.
-
(1995)
Nat. Genet.
, vol.11
, pp. 415-421
-
-
Kaartinen, V.1
Voncken, J.W.2
Shuler, C.3
Warburton, D.4
Bu, D.5
Heisterkamp, N.6
Groffen, J.7
-
54
-
-
0042876796
-
Transforming growth factor beta in cardiovascular development and function
-
Azhar M, Schultz Jel J, Grupp I, Dorn GW II, Meneton P, Molin DG, Gittenberger-de Groot AC, Doetschman T. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev. 2003;14:391-407.
-
(2003)
Cytokine Growth Factor Rev.
, vol.14
, pp. 391-407
-
-
Azhar, M.1
Jel, J.S.2
Grupp, I.3
Dorn II., G.W.4
Meneton, P.5
Molin, D.G.6
Gittenberger-De Groot, A.C.7
Doetschman, T.8
-
55
-
-
0030765945
-
Smad6 inhibits signalling by the TGF-beta superfamily
-
Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997;389:622-626.
-
(1997)
Nature
, vol.389
, pp. 622-626
-
-
Imamura, T.1
Takase, M.2
Nishihara, A.3
Oeda, E.4
Hanai, J.5
Kawabata, M.6
Miyazono, K.7
-
56
-
-
17444453852
-
A role for smad6 in development and homeostasis of the cardiovascular system
-
Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr, Falb D, Huszar D. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24:171-174.
-
(2000)
Nat. Genet.
, vol.24
, pp. 171-174
-
-
Galvin, K.M.1
Donovan, M.J.2
Lynch, C.A.3
Meyer, R.I.4
Paul, R.J.5
Lorenz, J.N.6
Fairchild-Huntress, V.7
Dixon, K.L.8
Dunmore, J.H.9
Gimbrone Jr., M.A.10
Falb, D.11
Huszar, D.12
-
57
-
-
0029786212
-
Receptor-associated Mad homologues synergize as effectors of the TGF-beta response
-
Zhang Y, Feng X, We R, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996;383:168-172.
-
(1996)
Nature
, vol.383
, pp. 168-172
-
-
Zhang, Y.1
Feng, X.2
We, R.3
Derynck, R.4
-
58
-
-
0030300115
-
MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling
-
Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996;87:1215-1224.
-
(1996)
Cell.
, vol.87
, pp. 1215-1224
-
-
Macias-Silva, M.1
Abdollah, S.2
Hoodless, P.A.3
Pirone, R.4
Attisano, L.5
Wrana, J.L.6
-
59
-
-
11244306331
-
Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo
-
Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;8:85-95.
-
(2005)
Dev. Cell.
, vol.8
, pp. 85-95
-
-
Lavine, K.J.1
Yu, K.2
White, A.C.3
Zhang, X.4
Smith, C.5
Partanen, J.6
Ornitz, D.M.7
-
60
-
-
0141816681
-
Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart
-
Pennisi D, Ballard VL, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn. 2003;228:161-172.
-
(2003)
Dev. Dyn.
, vol.228
, pp. 161-172
-
-
Pennisi, D.1
Ballard, V.L.2
Mikawa, T.3
-
61
-
-
0038545609
-
Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation
-
Sugi Y, Ito N, Szebenyi G, Myers K, Fallon JF, Mikawa T, Markwald RR. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol. 2003;258:252-263.
-
(2003)
Dev. Biol.
, vol.258
, pp. 252-263
-
-
Sugi, Y.1
Ito, N.2
Szebenyi, G.3
Myers, K.4
Fallon, J.F.5
Mikawa, T.6
Markwald, R.R.7
-
62
-
-
14544302254
-
Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium
-
Pennisi D, Mikawa T. Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol. 2005;279:378-390.
-
(2005)
Dev. Biol.
, vol.279
, pp. 378-390
-
-
Pennisi, D.1
Mikawa, T.2
-
63
-
-
0035370474
-
Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development
-
Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol. 2001;234:204-215.
-
(2001)
Dev. Biol.
, vol.234
, pp. 204-215
-
-
Morabito, C.J.1
Dettman, R.W.2
Kattan, J.3
Collier, J.M.4
Bristow, J.5
-
64
-
-
33745129425
-
Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development
-
Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20:1651-1666.
-
(2006)
Genes Dev.
, vol.20
, pp. 1651-1666
-
-
Lavine, K.J.1
White, A.C.2
Park, C.3
Smith, C.S.4
Choi, K.5
Long, F.6
Hui, C.C.7
Ornitz, D.M.8
-
65
-
-
0038078293
-
Temporal and spatial expression of fibroblast growth factor receptor 4 isoforms in murine tissues
-
DOI 10.1023/A:1023326524562
-
Cool SM, Sayer RE, van Heumen WR, Pickles JO, Nurcombe V. Temporal and spatial expression of fibroblast growth factor receptor 4 isoforms in murine tissues. Histochem J. 2002;34:291-297. (Pubitemid 36543072)
-
(2002)
Histochemical Journal
, vol.34
, Issue.6-7
, pp. 291-297
-
-
Cool, S.M.1
Sayer, R.E.2
Van Heumen, W.R.3
Pickles, J.O.4
Nurcombe, V.5
-
66
-
-
46849087764
-
Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice
-
Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest. 2008;118:2404-2414.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2404-2414
-
-
Lavine, K.J.1
Kovacs, A.2
Ornitz, D.M.3
-
67
-
-
61349202774
-
FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation
-
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol. 2009;328:148-159.
-
(2009)
Dev. Biol.
, vol.328
, pp. 148-159
-
-
Pennisi, D.J.1
Mikawa, T.2
-
68
-
-
0031930918
-
Fibroblast growth factor 2 control of vascular tone
-
Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T. Fibroblast growth factor 2 control of vascular tone. Nat Med. 1998;4:201-207.
-
(1998)
Nat. Med.
, vol.4
, pp. 201-207
-
-
Zhou, M.1
Sutliff, R.L.2
Paul, R.J.3
Lorenz, J.N.4
Hoying, J.B.5
Haudenschild, C.C.6
Yin, M.7
Coffin, J.D.8
Kong, L.9
Kranias, E.G.10
Luo, W.11
Boivin, G.P.12
Duffy, J.J.13
Pawlowski, S.A.14
Doetschman, T.15
-
69
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607-619.
-
(2006)
Cell.
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
Coon, A.N.2
Kikuchi, K.3
Holdway, J.E.4
Roberts, R.W.5
Burns, C.G.6
Poss, K.D.7
-
70
-
-
0033007224
-
Genomic structure, mapping, activity and expression of fibroblast growth factor 17
-
Xu J, Lawshe A, MacArthur CA, Ornitz DM. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech Dev. 1999;83:165-178.
-
(1999)
Mech. Dev.
, vol.83
, pp. 165-178
-
-
Xu, J.1
Lawshe, A.2
MacArthur, C.A.3
Ornitz, D.M.4
-
71
-
-
0034023520
-
Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures
-
Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development. 2000;127:1833-1843.
-
(2000)
Development
, vol.127
, pp. 1833-1843
-
-
Xu, J.1
Liu, Z.2
Ornitz, D.M.3
-
72
-
-
0034951436
-
Multiple growth factors regulate coronary embryonic vasculogenesis
-
Tomanek RJ, Zheng W, Peters KG, Lin P, Holifield JS, Suvarna PR. Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn. 2001;221:265-273.
-
(2001)
Dev. Dyn.
, vol.221
, pp. 265-273
-
-
Tomanek, R.J.1
Zheng, W.2
Peters, K.G.3
Lin, P.4
Holifield, J.S.5
Suvarna, P.R.6
-
74
-
-
0026695298
-
Developmental expression of the alpha receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation
-
Orr-Urtreger A, Bedford MT, Do MS, Eisenbach L, Lonai P. Developmental expression of the alpha receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation. Development. 1992;115:289-303.
-
(1992)
Development
, vol.115
, pp. 289-303
-
-
Orr-Urtreger, A.1
Bedford, M.T.2
Do, M.S.3
Eisenbach, L.4
Lonai, P.5
-
75
-
-
0028273897
-
Expression of the platelet-derived growth factor beta receptor during organogenesis and tissue differentiation in the mouse embryo
-
Shinbrot E, Peters KG, Williams LT. Expression of the platelet-derived growth factor beta receptor during organogenesis and tissue differentiation in the mouse embryo. Dev Dyn. 1994;199:169-175.
-
(1994)
Dev. Dyn.
, vol.199
, pp. 169-175
-
-
Shinbrot, E.1
Peters, K.G.2
Williams, L.T.3
-
76
-
-
0030926144
-
PDGFR alpha expression during mouse embryogenesis: Immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFR alpha antibody APA5
-
Takakura N, Yoshida H, Ogura Y, Kataoka H, Nishikawa S, Nishikawa S. PDGFR alpha expression during mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFR alpha antibody APA5. J Histochem Cytochem. 1997;45:883-893.
-
(1997)
J. Histochem. Cytochem.
, vol.45
, pp. 883-893
-
-
Takakura, N.1
Yoshida, H.2
Ogura, Y.3
Kataoka, H.4
Nishikawa, S.5
Nishikawa, S.6
-
77
-
-
0035894383
-
Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity
-
Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, Nagata K, Inagaki M, Majesky MW. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001;240:404-418.
-
(2001)
Dev. Biol.
, vol.240
, pp. 404-418
-
-
Lu, J.1
Landerholm, T.E.2
Wei, J.S.3
Dong, X.R.4
Wu, S.P.5
Liu, X.6
Nagata, K.7
Inagaki, M.8
Majesky, M.W.9
-
78
-
-
58149392309
-
Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations
-
Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, Kazi MN, Ruiz FR, Pu WT, Tallquist MD. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008;103:1393-1401.
-
(2008)
Circ. Res.
, vol.103
, pp. 1393-1401
-
-
Mellgren, A.M.1
Smith, C.L.2
Olsen, G.S.3
Eskiocak, B.4
Zhou, B.5
Kazi, M.N.6
Ruiz, F.R.7
Pu, W.T.8
Tallquist, M.D.9
-
79
-
-
0030801279
-
Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos
-
Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997;210:96-105.
-
(1997)
Dev. Dyn.
, vol.210
, pp. 96-105
-
-
Perez-Pomares, J.M.1
Macias, D.2
Garcia-Garrido, L.3
Munoz-Chapuli, R.4
-
80
-
-
46249088160
-
Temporally expressed PDGF and FGF-2 regulate embryonic coronary artery formation and growth
-
Tomanek RJ, Hansen HK, Christensen LP. Temporally expressed PDGF and FGF-2 regulate embryonic coronary artery formation and growth. Arterioscler Thromb Vasc Biol. 2008;28:1237-1243.
-
(2008)
Arterioscler Thromb. Vasc. Biol.
, vol.28
, pp. 1237-1243
-
-
Tomanek, R.J.1
Hansen, H.K.2
Christensen, L.P.3
-
81
-
-
0027936261
-
Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities
-
Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8:1875-1887.
-
(1994)
Genes Dev.
, vol.8
, pp. 1875-1887
-
-
Leveen, P.1
Pekny, M.2
Gebre-Medhin, S.3
Swolin, B.4
Larsson, E.5
Betsholtz, C.6
-
82
-
-
0030756325
-
Pericyte loss and microaneurysm formation in PDGF-B-deficient mice
-
Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242-245.
-
(1997)
Science
, vol.277
, pp. 242-245
-
-
Lindahl, P.1
Johansson, B.R.2
Leveen, P.3
Betsholtz, C.4
-
83
-
-
0032768156
-
Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
-
Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126:3047-3055.
-
(1999)
Development
, vol.126
, pp. 3047-3055
-
-
Hellstrom, M.1
Kalen, M.2
Lindahl, P.3
Abramsson, A.4
Betsholtz, C.5
-
84
-
-
39749107503
-
PDGF-B signaling is important for murine cardiac development: Its role in developing atrioventricular valves, coronaries, and cardiac innervation
-
Van den Akker NM, Winkel LC, Nisancioglu MH, Maas S, Wisse LJ, Armulik A, Poelmann R, Lie-Venema H, Betsholtz C, Gittenberger-De Groot A. PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev Dyn. 2008;237:494-503.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 494-503
-
-
Van Den Akker, N.M.1
Winkel, L.C.2
Nisancioglu, M.H.3
Maas, S.4
Wisse, L.J.5
Armulik, A.6
Poelmann, R.7
Lie-Venema, H.8
Betsholtz, C.9
Gittenberger-De Groot, A.10
-
85
-
-
33846243239
-
Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization
-
Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien K, Riley P. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177-182.
-
(2007)
Nature
, vol.445
, pp. 177-182
-
-
Smart, N.1
Risebro, C.A.2
Melville, A.A.3
Moses, K.4
Schwartz, R.J.5
Chien, K.6
Riley, P.7
-
86
-
-
14044263538
-
Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract
-
Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ. Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res. 2005;96:292-299.
-
(2005)
Circ. Res.
, vol.96
, pp. 292-299
-
-
Phillips, H.M.1
Murdoch, J.N.2
Chaudhry, B.3
Copp, A.J.4
Henderson, D.J.5
-
87
-
-
40949159357
-
Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation
-
Phillips HM, Hildreth V, Peat JD, Murdoch JN, Kobayashi K, Chaudhry B, Henderson DJ. Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res. 2008;102:615-623.
-
(2008)
Circ. Res.
, vol.102
, pp. 615-623
-
-
Phillips, H.M.1
Hildreth, V.2
Peat, J.D.3
Murdoch, J.N.4
Kobayashi, K.5
Chaudhry, B.6
Henderson, D.J.7
-
88
-
-
23944514316
-
Connexin43 deficiency causes dysregulation of coronary vasculogenesis
-
Walker DL, Vacha SJ, Kirby ML, Lo CW. Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Dev Biol. 2005;284:479-498.
-
(2005)
Dev. Biol.
, vol.284
, pp. 479-498
-
-
Walker, D.L.1
Vacha, S.J.2
Kirby, M.L.3
Lo, C.W.4
-
89
-
-
70350020783
-
Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development
-
Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW. Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development. 2009;136:3185-3193.
-
(2009)
Development
, vol.136
, pp. 3185-3193
-
-
Rhee, D.Y.1
Zhao, X.Q.2
Francis, R.J.3
Huang, G.Y.4
Mably, J.D.5
Lo, C.W.6
-
91
-
-
59649099306
-
Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway
-
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman R, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn. 2009;238:423-430.
-
(2009)
Dev. Dyn.
, vol.238
, pp. 423-430
-
-
Nesbitt, T.L.1
Roberts, A.2
Tan, H.3
Junor, L.4
Yost, M.J.5
Potts, J.D.6
Dettman, R.7
Goodwin, R.L.8
-
92
-
-
10644262000
-
TGF-beta1,-beta2 and-beta3 cooperate to facilitate tubulogenesis in the explanted quail heart
-
Holifield J, Arlen A, Runyan R, Tomanek R. TGF-beta1,-beta2 and-beta3 cooperate to facilitate tubulogenesis in the explanted quail heart. J Vasc Res. 2004;41:491-498.
-
(2004)
J. Vasc. Res.
, vol.41
, pp. 491-498
-
-
Holifield, J.1
Arlen, A.2
Runyan, R.3
Tomanek, R.4
-
93
-
-
60749096085
-
Control of vascular morphogenesis and homeostasis through the angiopoietin-tie system
-
Augustin H, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10:165-177.
-
(2009)
Nat. Rev. Mol. Cell. Biol.
, vol.10
, pp. 165-177
-
-
Augustin, H.1
Koh, G.Y.2
Thurston, G.3
Alitalo, K.4
-
94
-
-
0030480322
-
Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis
-
Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171-1180.
-
(1996)
Cell.
, vol.87
, pp. 1171-1180
-
-
Suri, C.1
Jones, P.F.2
Patan, S.3
Bartunkova, S.4
Maisonpierre, P.C.5
Davis, S.6
Sato, T.N.7
Yancopoulos, G.D.8
-
95
-
-
1542378240
-
Angiopoietin 1 expression levels in the myocardium direct coronary vessel development
-
Ward N, Van Slyke P, Sturk C, Cruz M, Dumont DJ. Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn. 2004;229:500-509.
-
(2004)
Dev. Dyn.
, vol.229
, pp. 500-509
-
-
Ward, N.1
Van Slyke, P.2
Sturk, C.3
Cruz, M.4
Dumont, D.J.5
-
96
-
-
0029001244
-
Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation
-
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376:70-74.
-
(1995)
Nature
, vol.376
, pp. 70-74
-
-
Sato, T.N.1
Tozawa, Y.2
Deutsch, U.3
Wolburg-Buchholz, K.4
Fujiwara, Y.5
Gendron-Maguire, M.6
Gridley, T.7
Wolburg, H.8
Risau, W.9
Qin, Y.10
-
97
-
-
64649084437
-
Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium
-
Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol. 2009;29:2011-2022.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2011-2022
-
-
Yuan, H.T.1
Khankin, E.V.2
Karumanchi, S.A.3
Parikh, S.M.4
-
98
-
-
18644382318
-
Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1
-
Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell. 2002;3:411-423.
-
(2002)
Dev. Cell.
, vol.3
, pp. 411-423
-
-
Gale, N.W.1
Thurston, G.2
Hackett, S.F.3
Renard, R.4
Wang, Q.5
McClain, J.6
Martin, C.7
Witte, C.8
Witte, M.H.9
Jackson, D.10
Suri, C.11
Campochiaro, P.A.12
Wiegand, S.J.13
Yancopoulos, G.D.14
-
99
-
-
0037062491
-
Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF)
-
Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A. 2002;99:8219-8224.
-
(2002)
Proc. Natl. Acad. Sci. U S A
, vol.99
, pp. 8219-8224
-
-
Visconti, R.P.1
Richardson, C.D.2
Sato, T.N.3
-
101
-
-
34548501528
-
The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis
-
Urayama K, Guilini C, Messaddeq N, Hu K, Steenman M, Kurose H, Ert G, Nebigil CG. The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis. FASEB J. 2007;21:2980-2993.
-
(2007)
FASEB J
, vol.21
, pp. 2980-2993
-
-
Urayama, K.1
Guilini, C.2
Messaddeq, N.3
Hu, K.4
Steenman, M.5
Kurose, H.6
Ert, G.7
Nebigil, C.G.8
-
102
-
-
42149109739
-
Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation
-
Urayama K, Guilini C, Turkeri G, Takir S, Kurose H, Messaddeq N, Dierich A, Nebigil CG. Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler Thromb Vasc Biol. 2008;28:841-849.
-
(2008)
Arterioscler Thromb. Vasc. Biol.
, vol.28
, pp. 841-849
-
-
Urayama, K.1
Guilini, C.2
Turkeri, G.3
Takir, S.4
Kurose, H.5
Messaddeq, N.6
Dierich, A.7
Nebigil, C.G.8
-
103
-
-
36049037185
-
Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart
-
Heineke J, Auger-Messier M, Xu J, Oka T, Sargent M, York A, Klevitsky R, Vaikunth S, Duncan S, Aronow B, Robbins J, Crombleholme TM, Cromblehol T, Molkentin J. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 2007;117:3198-3210.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 3198-3210
-
-
Heineke, J.1
Auger-Messier, M.2
Xu, J.3
Oka, T.4
Sargent, M.5
York, A.6
Klevitsky, R.7
Vaikunth, S.8
Duncan, S.9
Aronow, B.10
Robbins, J.11
Crombleholme, T.M.12
Cromblehol, T.13
Molkentin, J.14
-
105
-
-
0033514314
-
FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped
-
Tevosian S, Deconinck AE, Cantor AB, Rieff HI, Fujiwara Y, Corfas G, Orkin SH. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci U S A. 1999;96:950-955.
-
(1999)
Proc. Natl. Acad. Sci. U S A
, vol.96
, pp. 950-955
-
-
Tevosian, S.1
Deconinck, A.E.2
Cantor, A.B.3
Rieff, H.I.4
Fujiwara, Y.5
Corfas, G.6
Orkin, S.H.7
-
106
-
-
0034705318
-
FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium
-
Tevosian S, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000;101:729-739.
-
(2000)
Cell.
, vol.101
, pp. 729-739
-
-
Tevosian, S.1
Deconinck, A.E.2
Tanaka, M.3
Schinke, M.4
Litovsky, S.H.5
Izumo, S.6
Fujiwara, Y.7
Orkin, S.H.8
-
107
-
-
67651005839
-
Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart
-
Zhou B, Ma Q, Kong S, Hu Y, Campbell P, Mcgowan F, Ackerman K, Wu B, Zhou B, Tevosian S, Pu W. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J Clin Invest. 2009;119:1462-1476.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1462-1476
-
-
Zhou, B.1
Ma, Q.2
Kong, S.3
Hu, Y.4
Campbell, P.5
Mcgowan, F.6
Ackerman, K.7
Wu, B.8
Zhou, B.9
Tevosian, S.10
Pu, W.11
-
108
-
-
44449087555
-
Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180
-
Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319:258-266.
-
(2008)
Dev. Biol.
, vol.319
, pp. 258-266
-
-
Huang, X.1
Gao, X.2
Diaz-Trelles, R.3
Ruiz-Lozano, P.4
Wang, Z.5
-
109
-
-
0141753974
-
Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation
-
Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth J-F, Marino S, Wittwer J, Scheidweiler A, Eckner R. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 2003;22:5175-5185.
-
(2003)
EMBO J
, vol.22
, pp. 5175-5185
-
-
Shikama, N.1
Lutz, W.2
Kretzschmar, R.3
Sauter, N.4
Roth, J.-F.5
Marino, S.6
Wittwer, J.7
Scheidweiler, A.8
Eckner, R.9
-
110
-
-
0031755408
-
Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart
-
Macias D, Perez-Pomares JM, Garcia-Garrido L, Carmona R, Munoz-Chapuli R. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Anat Embryol (Berl). 1998;198:307-315.
-
(1998)
Anat. Embryol. (Berl)
, vol.198
, pp. 307-315
-
-
Macias, D.1
Perez-Pomares, J.M.2
Garcia-Garrido, L.3
Carmona, R.4
Munoz-Chapuli, R.5
-
111
-
-
0344921402
-
Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos
-
Lie-Venema H, Gittenberger-De Groot A, van Empel LJ, Boot MJ, Kerkdijk H, de Kant E, Deruiter M. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ Res. 2003;92:749-756.
-
(2003)
Circ. Res.
, vol.92
, pp. 749-756
-
-
Lie-Venema, H.1
Gittenberger-De Groot, A.2
Van Empel, L.J.3
Boot, M.J.4
Kerkdijk, H.5
De Kant, E.6
Deruiter, M.7
-
112
-
-
48849103985
-
The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning
-
Théveniau-Ruissy M, Dandonneau M, Mesbah K, Ghez O, Mattei M-G, Miquerol L, Kelly RG. The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res. 2008;103:142-148.
-
(2008)
Circ. Res.
, vol.103
, pp. 142-148
-
-
Théveniau-Ruissy, M.1
Dandonneau, M.2
Mesbah, K.3
Ghez, O.4
Mattei, M.-G.5
Miquerol, L.6
Kelly, R.G.7
-
113
-
-
0035211806
-
Cloning and expression analysis of the mouse T-box gene Tbx18
-
Kraus F, Haenig B, Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev. 2001;100:83-86.
-
(2001)
Mech. Dev.
, vol.100
, pp. 83-86
-
-
Kraus, F.1
Haenig, B.2
Kispert, A.3
-
114
-
-
4544302254
-
Analysis of TBX18 expression in chick embryos
-
Haenig B, Kispert A. Analysis of TBX18 expression in chick embryos. Dev Genes Evol. 2004;214:407-411.
-
(2004)
Dev. Genes Evol.
, vol.214
, pp. 407-411
-
-
Haenig, B.1
Kispert, A.2
-
115
-
-
1842413728
-
Holt-oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family
-
Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21-29.
-
(1997)
Nat. Genet.
, vol.15
, pp. 21-29
-
-
Li, Q.Y.1
Newbury-Ecob, R.A.2
Terrett, J.A.3
Wilson, D.I.4
Curtis, A.R.5
Yi, C.H.6
Gebuhr, T.7
Bullen, P.J.8
Robson, S.C.9
Strachan, T.10
Bonnet, D.11
Lyonnet, S.12
Young, I.D.13
Raeburn, J.A.14
Buckler, A.J.15
Law, D.J.16
Brook, J.D.17
-
116
-
-
0030636780
-
Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-oram syndrome
-
Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30-35.
-
(1997)
Nat. Genet.
, vol.15
, pp. 30-35
-
-
Basson, C.T.1
Bachinsky, D.R.2
Lin, R.C.3
Levi, T.4
Elkins, J.A.5
Soults, J.6
Grayzel, D.7
Kroumpouzou, E.8
Traill, T.A.9
Leblanc-Straceski, J.10
Renault, B.11
Kucherlapati, R.12
Seidman, J.G.13
Seidman, C.E.14
-
117
-
-
4844220912
-
A role for Tbx5 in proepicardial cell migration during cardiogenesis
-
Hatcher CJ, Diman NY, Kim MS, Pennisi D, Song Y, Goldstein MM, Mikawa T, Basson CT. A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol Genomics. 2004;18:129-140.
-
(2004)
Physiol. Genomics
, vol.18
, pp. 129-140
-
-
Hatcher, C.J.1
Diman, N.Y.2
Kim, M.S.3
Pennisi, D.4
Song, Y.5
Goldstein, M.M.6
Mikawa, T.7
Basson, C.T.8
-
118
-
-
33846232336
-
Differential regulation of Tbx5 protein expression and sub-cellular localization during heart development
-
Bimber B, Dettman RW, Simon H-G. Differential regulation of Tbx5 protein expression and sub-cellular localization during heart development. Dev Biol. 2007;302:230-242.
-
(2007)
Dev. Biol.
, vol.302
, pp. 230-242
-
-
Bimber, B.1
Dettman, R.W.2
Simon, H.-G.3
-
119
-
-
0035312839
-
Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors
-
Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 2001;15:839-844.
-
(2001)
Genes Dev.
, vol.15
, pp. 839-844
-
-
Crispino, J.D.1
Lodish, M.B.2
Thurberg, B.L.3
Litovsky, S.H.4
Collins, T.5
Molkentin, J.D.6
Orkin, S.H.7
|