-
1
-
-
0004493166
-
On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
-
Amaldi E., and Kann V. On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209 (1998) 237-260
-
(1998)
Theoretical Computer Science
, vol.209
, pp. 237-260
-
-
Amaldi, E.1
Kann, V.2
-
3
-
-
34248544069
-
-
Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Dept. Infor. Comput. Sci., Univ. California, Irvine, CA.
-
-
-
-
4
-
-
2942734703
-
Benefitting from the variables that variable selection discards
-
Caruana R., and de Sa V. Benefitting from the variables that variable selection discards. Journal of Machine Learning Research 3 (2003) 1245-1264
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1245-1264
-
-
Caruana, R.1
de Sa, V.2
-
5
-
-
0034087399
-
Age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in population made up of black and white subjects: the Bagalusa Heart Study
-
Chen W., Bao W., Begum S., Elkasabany A., Srinivasan S.R., and Berenson G.S. Age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in population made up of black and white subjects: the Bagalusa Heart Study. Diabetes 49 (2000) 1042-1048
-
(2000)
Diabetes
, vol.49
, pp. 1042-1048
-
-
Chen, W.1
Bao, W.2
Begum, S.3
Elkasabany, A.4
Srinivasan, S.R.5
Berenson, G.S.6
-
6
-
-
0033861789
-
Different association of hypertension and insulin-related metabolic syndrome between man and women in 8437 nondiabetic Chinese
-
Chen C.H., Lin K.C., Tsai S.T., and Chou P. Different association of hypertension and insulin-related metabolic syndrome between man and women in 8437 nondiabetic Chinese. American Journal of Hypertension 13 7 (2000) 846-853
-
(2000)
American Journal of Hypertension
, vol.13
, Issue.7
, pp. 846-853
-
-
Chen, C.H.1
Lin, K.C.2
Tsai, S.T.3
Chou, P.4
-
7
-
-
34249753618
-
Support-vector networks
-
Cortes C., and Vapnik V. Support-vector networks. Machine learning 20 3 (1995) 273-297
-
(1995)
Machine learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
2942723846
-
A divisive information-theoretic feature clustering algorithm for text classification
-
Dhillon I., Mallea S., and Kumar R. A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research 3 (2003) 1265-1287
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1265-1287
-
-
Dhillon, I.1
Mallea, S.2
Kumar, R.3
-
10
-
-
13244270060
-
Applying support vector machines to predict building energy consumption in tropical region
-
Dong B., Cao C., and Lee S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings 37 (2005) 545-553
-
(2005)
Energy and Buildings
, vol.37
, pp. 545-553
-
-
Dong, B.1
Cao, C.2
Lee, S.E.3
-
12
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 1-3 (2002) 389-442
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-442
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
13
-
-
0037312471
-
A note on the universal approximation capability of support vector machines
-
Hammer B., and Gersmann K. A note on the universal approximation capability of support vector machines. Neural Processing Letters 17 (2003) 43-53
-
(2003)
Neural Processing Letters
, vol.17
, pp. 43-53
-
-
Hammer, B.1
Gersmann, K.2
-
15
-
-
34147095576
-
-
Hermes, L., & Buhmann, J. M. (2000). Feature selection for support vector machines. In Proceedings of the international conference on pattern recognition (ICPR'00) (Vol. 2, pp. 716-719).
-
-
-
-
16
-
-
0033898125
-
High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease
-
Jeppesen J., Hein H.O., Suadicani P., and Gyntelberg F. High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease. Hypertension 36 (2000) 226-232
-
(2000)
Hypertension
, vol.36
, pp. 226-232
-
-
Jeppesen, J.1
Hein, H.O.2
Suadicani, P.3
Gyntelberg, F.4
-
17
-
-
0035061401
-
Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population
-
Kim Y.I., Kim C.H., Choi C.S., Chung Y.E., Lee M.S., Lee S.I., et al. Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population. Diabetes Research and Clinical Practice 52 (2001) 145-152
-
(2001)
Diabetes Research and Clinical Practice
, vol.52
, pp. 145-152
-
-
Kim, Y.I.1
Kim, C.H.2
Choi, C.S.3
Chung, Y.E.4
Lee, M.S.5
Lee, S.I.6
-
18
-
-
0031381525
-
Wapper for feature selection
-
Kohavi R., and John G. Wapper for feature selection. Artificial Intelligence 97 1-2 (1997) 273-324
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
19
-
-
0036697221
-
Comparison of three-dimensional anthropometric body surface scanning to waist-hip ratio and body mass index in correlation with metabolic risk factors
-
Lin J.D., Chiou W.K., Weng H.F., Tsai Y.H., and Liu T.H. Comparison of three-dimensional anthropometric body surface scanning to waist-hip ratio and body mass index in correlation with metabolic risk factors. Journal of Clinical Epidemiology 55 (2002) 757-766
-
(2002)
Journal of Clinical Epidemiology
, vol.55
, pp. 757-766
-
-
Lin, J.D.1
Chiou, W.K.2
Weng, H.F.3
Tsai, Y.H.4
Liu, T.H.5
-
21
-
-
2942620732
-
Brain tumor classification based on long echo proton MRS signals
-
Lukas L., Devos A., Suykens J.A.K., Vanhamme L., Howe F.A., Majos C., et al. Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine 31 (2004) 73-89
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, pp. 73-89
-
-
Lukas, L.1
Devos, A.2
Suykens, J.A.K.3
Vanhamme, L.4
Howe, F.A.5
Majos, C.6
-
22
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical transactions of the Royal Society, London, A 209 (1909) 415-446
-
(1909)
Philosophical transactions of the Royal Society, London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
23
-
-
34248556764
-
-
Mukherjee, S., Tamayo, T., Slonim, D., Verri, A., Golub, T., Mesirov, J., et al. (1999). Support vector machine classification of microarray data. AI Memo 1677, Massachuetts Institute of Technology.
-
-
-
-
24
-
-
1842408448
-
Low insulin sensitive is associated with clustering of cardiovascular disease risk factors
-
Mykkane L., Haffner S.M., Ronnemaa T., Bennemaa T., Bergman R.N., and Laakso M. Low insulin sensitive is associated with clustering of cardiovascular disease risk factors. American Journal of Epidemiology 146 (1997) 315-321
-
(1997)
American Journal of Epidemiology
, vol.146
, pp. 315-321
-
-
Mykkane, L.1
Haffner, S.M.2
Ronnemaa, T.3
Bennemaa, T.4
Bergman, R.N.5
Laakso, M.6
-
25
-
-
0030700113
-
-
Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., & Poggio, T. (1997). Pedestrain detection using wavelet templates. In Proceedings of the computer vision and pattern recognition (pp. 193-199). Puerto Rico, June 16-20.
-
-
-
-
26
-
-
0030673582
-
-
Osuna E., Freund R., & Girosi F. (1997). Training support vector machines: an application to face detection. In Proceedings of the computer vision and pattern recognition '97 (pp. 130-136).
-
-
-
-
27
-
-
13844266749
-
Data classification with radial basis function networks based on a novel kernel density estimation algorithm
-
Oyang Y.J., Hwang S.C., Ou Y.Y., Chen C.Y., and Chen Z.W. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Transactions on Neural Networks 16 1 (2005) 225-236
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 225-236
-
-
Oyang, Y.J.1
Hwang, S.C.2
Ou, Y.Y.3
Chen, C.Y.4
Chen, Z.W.5
-
28
-
-
18544377322
-
Classification of electronic nose data with support vector machines
-
Pardo M., and Sberveglieri G. Classification of electronic nose data with support vector machines. Sensors and Actuators B 107 (2005) 730-737
-
(2005)
Sensors and Actuators B
, vol.107
, pp. 730-737
-
-
Pardo, M.1
Sberveglieri, G.2
-
30
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
31
-
-
17644437641
-
Advanced support vector machines and kernel methods
-
Sanchez V.D.A. Advanced support vector machines and kernel methods. Neurocomputing 55 (2003) 5-20
-
(2003)
Neurocomputing
, vol.55
, pp. 5-20
-
-
Sanchez, V.D.A.1
-
32
-
-
34248554859
-
-
Schmidt, M. (1996). Identifying speakers with support vector networks. In Interface '96 Proceedings. Sydney.
-
-
-
-
33
-
-
34248552374
-
-
Scholkopf, B. (1997). Support Vector Learning, PhD theiss, R. Oldenbourg Verlag, Munich.
-
-
-
-
34
-
-
0003408420
-
-
MIT Press, Cambridge, Mass
-
Scholkopf B., and Smola A.J. Learning with kernels: support vector machines, regularization, optimization, and beyond (2002), MIT Press, Cambridge, Mass
-
(2002)
Learning with kernels: support vector machines, regularization, optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
35
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Scholkopf B., Smola A.J., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998) 1299-1319
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.J.2
Muller, K.R.3
-
37
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 3 (2003) 1415-1438
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
40
-
-
0842265197
-
Support vector machines for prediction of peptidyl prolyl cis/trans isomerization
-
Wang M.L., Li W.J., and Xu W.B. Support vector machines for prediction of peptidyl prolyl cis/trans isomerization. Journal of Peptide Research 63 (2004) 23-28
-
(2004)
Journal of Peptide Research
, vol.63
, pp. 23-28
-
-
Wang, M.L.1
Li, W.J.2
Xu, W.B.3
-
42
-
-
84898948710
-
-
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2001). Feature selection for svms. In Proceedings of the advances in neural information processing systems (Vol. 13).
-
-
-
-
43
-
-
15744367392
-
Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
-
Yao X.J., Panaye A., Doucet J.P., Chen H.F., Zhang R.S., Fan B.T., et al. Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks. Analytica Chimica Acta 535 (2005) 259-273
-
(2005)
Analytica Chimica Acta
, vol.535
, pp. 259-273
-
-
Yao, X.J.1
Panaye, A.2
Doucet, J.P.3
Chen, H.F.4
Zhang, R.S.5
Fan, B.T.6
|