메뉴 건너뛰기




Volumn 34, Issue 1, 2008, Pages 754-763

Feature selection for the SVM: An application to hypertension diagnosis

Author keywords

Classification; Diagnosis; Hypertension; Kernel; Polynomial; RBF; Support vector machine

Indexed keywords

ANTHROPOMETRY; BACKPROPAGATION; DIAGNOSIS; FEATURE EXTRACTION; PATTERN RECOGNITION; POLYNOMIALS;

EID: 34248566911     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2006.10.010     Document Type: Article
Times cited : (73)

References (43)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
    • Amaldi E., and Kann V. On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209 (1998) 237-260
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 3
    • 34248544069 scopus 로고    scopus 로고
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Dept. Infor. Comput. Sci., Univ. California, Irvine, CA.
  • 4
    • 2942734703 scopus 로고    scopus 로고
    • Benefitting from the variables that variable selection discards
    • Caruana R., and de Sa V. Benefitting from the variables that variable selection discards. Journal of Machine Learning Research 3 (2003) 1245-1264
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1245-1264
    • Caruana, R.1    de Sa, V.2
  • 5
    • 0034087399 scopus 로고    scopus 로고
    • Age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in population made up of black and white subjects: the Bagalusa Heart Study
    • Chen W., Bao W., Begum S., Elkasabany A., Srinivasan S.R., and Berenson G.S. Age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in population made up of black and white subjects: the Bagalusa Heart Study. Diabetes 49 (2000) 1042-1048
    • (2000) Diabetes , vol.49 , pp. 1042-1048
    • Chen, W.1    Bao, W.2    Begum, S.3    Elkasabany, A.4    Srinivasan, S.R.5    Berenson, G.S.6
  • 6
    • 0033861789 scopus 로고    scopus 로고
    • Different association of hypertension and insulin-related metabolic syndrome between man and women in 8437 nondiabetic Chinese
    • Chen C.H., Lin K.C., Tsai S.T., and Chou P. Different association of hypertension and insulin-related metabolic syndrome between man and women in 8437 nondiabetic Chinese. American Journal of Hypertension 13 7 (2000) 846-853
    • (2000) American Journal of Hypertension , vol.13 , Issue.7 , pp. 846-853
    • Chen, C.H.1    Lin, K.C.2    Tsai, S.T.3    Chou, P.4
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Machine learning 20 3 (1995) 273-297
    • (1995) Machine learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillon I., Mallea S., and Kumar R. A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research 3 (2003) 1265-1287
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.1    Mallea, S.2    Kumar, R.3
  • 10
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • Dong B., Cao C., and Lee S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings 37 (2005) 545-553
    • (2005) Energy and Buildings , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 1-3 (2002) 389-442
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-442
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • Hammer B., and Gersmann K. A note on the universal approximation capability of support vector machines. Neural Processing Letters 17 (2003) 43-53
    • (2003) Neural Processing Letters , vol.17 , pp. 43-53
    • Hammer, B.1    Gersmann, K.2
  • 15
    • 34147095576 scopus 로고    scopus 로고
    • Hermes, L., & Buhmann, J. M. (2000). Feature selection for support vector machines. In Proceedings of the international conference on pattern recognition (ICPR'00) (Vol. 2, pp. 716-719).
  • 16
    • 0033898125 scopus 로고    scopus 로고
    • High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease
    • Jeppesen J., Hein H.O., Suadicani P., and Gyntelberg F. High triglycerides and low HDL cholesterol and blood pressure and risk of ischemic heart disease. Hypertension 36 (2000) 226-232
    • (2000) Hypertension , vol.36 , pp. 226-232
    • Jeppesen, J.1    Hein, H.O.2    Suadicani, P.3    Gyntelberg, F.4
  • 17
    • 0035061401 scopus 로고    scopus 로고
    • Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population
    • Kim Y.I., Kim C.H., Choi C.S., Chung Y.E., Lee M.S., Lee S.I., et al. Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population. Diabetes Research and Clinical Practice 52 (2001) 145-152
    • (2001) Diabetes Research and Clinical Practice , vol.52 , pp. 145-152
    • Kim, Y.I.1    Kim, C.H.2    Choi, C.S.3    Chung, Y.E.4    Lee, M.S.5    Lee, S.I.6
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wapper for feature selection
    • Kohavi R., and John G. Wapper for feature selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 19
    • 0036697221 scopus 로고    scopus 로고
    • Comparison of three-dimensional anthropometric body surface scanning to waist-hip ratio and body mass index in correlation with metabolic risk factors
    • Lin J.D., Chiou W.K., Weng H.F., Tsai Y.H., and Liu T.H. Comparison of three-dimensional anthropometric body surface scanning to waist-hip ratio and body mass index in correlation with metabolic risk factors. Journal of Clinical Epidemiology 55 (2002) 757-766
    • (2002) Journal of Clinical Epidemiology , vol.55 , pp. 757-766
    • Lin, J.D.1    Chiou, W.K.2    Weng, H.F.3    Tsai, Y.H.4    Liu, T.H.5
  • 22
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical transactions of the Royal Society, London, A 209 (1909) 415-446
    • (1909) Philosophical transactions of the Royal Society, London, A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 23
    • 34248556764 scopus 로고    scopus 로고
    • Mukherjee, S., Tamayo, T., Slonim, D., Verri, A., Golub, T., Mesirov, J., et al. (1999). Support vector machine classification of microarray data. AI Memo 1677, Massachuetts Institute of Technology.
  • 25
    • 0030700113 scopus 로고    scopus 로고
    • Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., & Poggio, T. (1997). Pedestrain detection using wavelet templates. In Proceedings of the computer vision and pattern recognition (pp. 193-199). Puerto Rico, June 16-20.
  • 26
    • 0030673582 scopus 로고    scopus 로고
    • Osuna E., Freund R., & Girosi F. (1997). Training support vector machines: an application to face detection. In Proceedings of the computer vision and pattern recognition '97 (pp. 130-136).
  • 27
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • Oyang Y.J., Hwang S.C., Ou Y.Y., Chen C.Y., and Chen Z.W. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Transactions on Neural Networks 16 1 (2005) 225-236
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 225-236
    • Oyang, Y.J.1    Hwang, S.C.2    Ou, Y.Y.3    Chen, C.Y.4    Chen, Z.W.5
  • 28
    • 18544377322 scopus 로고    scopus 로고
    • Classification of electronic nose data with support vector machines
    • Pardo M., and Sberveglieri G. Classification of electronic nose data with support vector machines. Sensors and Actuators B 107 (2005) 730-737
    • (2005) Sensors and Actuators B , vol.107 , pp. 730-737
    • Pardo, M.1    Sberveglieri, G.2
  • 30
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 31
    • 17644437641 scopus 로고    scopus 로고
    • Advanced support vector machines and kernel methods
    • Sanchez V.D.A. Advanced support vector machines and kernel methods. Neurocomputing 55 (2003) 5-20
    • (2003) Neurocomputing , vol.55 , pp. 5-20
    • Sanchez, V.D.A.1
  • 32
    • 34248554859 scopus 로고    scopus 로고
    • Schmidt, M. (1996). Identifying speakers with support vector networks. In Interface '96 Proceedings. Sydney.
  • 33
    • 34248552374 scopus 로고    scopus 로고
    • Scholkopf, B. (1997). Support Vector Learning, PhD theiss, R. Oldenbourg Verlag, Munich.
  • 35
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A.J., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 37
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 3 (2003) 1415-1438
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 40
    • 0842265197 scopus 로고    scopus 로고
    • Support vector machines for prediction of peptidyl prolyl cis/trans isomerization
    • Wang M.L., Li W.J., and Xu W.B. Support vector machines for prediction of peptidyl prolyl cis/trans isomerization. Journal of Peptide Research 63 (2004) 23-28
    • (2004) Journal of Peptide Research , vol.63 , pp. 23-28
    • Wang, M.L.1    Li, W.J.2    Xu, W.B.3
  • 42
    • 84898948710 scopus 로고    scopus 로고
    • Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2001). Feature selection for svms. In Proceedings of the advances in neural information processing systems (Vol. 13).
  • 43
    • 15744367392 scopus 로고    scopus 로고
    • Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
    • Yao X.J., Panaye A., Doucet J.P., Chen H.F., Zhang R.S., Fan B.T., et al. Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks. Analytica Chimica Acta 535 (2005) 259-273
    • (2005) Analytica Chimica Acta , vol.535 , pp. 259-273
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Chen, H.F.4    Zhang, R.S.5    Fan, B.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.