-
1
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351.
-
(2007)
Ann. Statist
, vol.35
, pp. 2313-2351
-
-
CANDES, E.1
TAO, T.2
-
2
-
-
33744552752
-
1-norm near-solution approximates the sparsest near-solution
-
MR2222440
-
1-norm near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59 907-934. MR2222440
-
(2006)
Comm. Pure Appl. Math
, vol.59
, pp. 907-934
-
-
DONOHO, D.L.1
-
3
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
MR1946581
-
FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
-
(2001)
J. Amer. Statist. Assoc
, vol.96
, pp. 1348-1360
-
-
FAN, J.1
LI, R.2
-
4
-
-
24344502730
-
On nonconcave penalized likelihood with diverging number of parameters
-
MR2065194
-
FAN, J. and PENG, H. (2004). On nonconcave penalized likelihood with diverging number of parameters. Ann. Statist. 32 928-961. MR2065194
-
(2004)
Ann. Statist
, vol.32
, pp. 928-961
-
-
FAN, J.1
PENG, H.2
-
5
-
-
84952149204
-
A statistical view of some chemometrics regression tools
-
FRANK, I. and FRIEDMAN, J. (1993). A statistical view of some chemometrics regression tools. Technometrics 35 109-135.
-
(1993)
Technometrics
, vol.35
, pp. 109-135
-
-
FRANK, I.1
FRIEDMAN, J.2
-
6
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
MR2278363
-
MEINSHAUSEN, N. and BUHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. MR2278363
-
(2006)
Ann. Statist
, vol.34
, pp. 1436-1462
-
-
MEINSHAUSEN, N.1
BUHLMANN, P.2
-
7
-
-
34548106491
-
Lasso-type recovery of sparse representations for high-dimensional data
-
Technical report, Dept. Statistics, Univ. California, Berkeley
-
MEINSHAUSEN, N. and YU, B. (2006). Lasso-type recovery of sparse representations for high-dimensional data. Technical report, Dept. Statistics, Univ. California, Berkeley.
-
(2006)
-
-
MEINSHAUSEN, N.1
YU, B.2
-
9
-
-
51049092645
-
Penalized linear unbiased selection
-
Technical Report 2007-003, Dept. Statistics, Rutgers Univ
-
ZHANG, C.-H. (2007). Penalized linear unbiased selection. Technical Report 2007-003, Dept. Statistics, Rutgers Univ.
-
(2007)
-
-
ZHANG, C.-H.1
-
10
-
-
50949096321
-
The sparsity and bias of the lasso selection in high-dimensional linear regression
-
ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594.
-
(2008)
Ann. Statist
, vol.36
, pp. 1567-1594
-
-
ZHANG, C.-H.1
HUANG, J.2
-
11
-
-
33845263263
-
On model selection consistency of LASSO
-
MR2274449
-
ZHAO, P. and YU, B. (2006). On model selection consistency of LASSO. J. Mach. Learn. Res. 7 2541-2567. MR2274449
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 2541-2567
-
-
ZHAO, P.1
YU, B.2
-
12
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
MR2279469
-
ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, pp. 1418-1429
-
-
ZOU, H.1
|