메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages

Feedback memetic algorithms for modeling gene regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; EVOLUTIONARY ALGORITHMS; FEEDBACK; GENES; MATHEMATICAL MODELS; MODAL ANALYSIS;

EID: 33847207482     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/cibcb.2005.1594899     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle
    • Hong-Chu Chen, Hsiao-Ching Lee, Tsai-Yun Lin, Wen-Hsiung Li, and Bor-Sen Chen. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 20(12):1914-1927, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.12 , pp. 1914-1927
    • Chen, H.1    Lee, H.2    Lin, T.3    Li, W.4    Chen, B.5
  • 2
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Kuang-Chi Chen, Tse-Yi Wang, Huei-Hun Tseng, Chi-Ying F. Huang, and Cheng-Yan Kao. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 21(12):2883-2890, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2883-2890
    • Chen, K.1    Wang, T.2    Tseng, H.3    Huang, C.F.4    Kao, C.5
  • 4
    • 0043130707 scopus 로고    scopus 로고
    • Michiel J.L. de Hoon, Seiya Imoto, Kazuo Kobayashi, Naotake Ogasawara, and Satoru Miyano. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus Subtilis using differential equations. In Proceedings of the Pacific Symposium on Biocomputing, 8, pages 17-28, 2003.
    • Michiel J.L. de Hoon, Seiya Imoto, Kazuo Kobayashi, Naotake Ogasawara, and Satoru Miyano. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus Subtilis using differential equations. In Proceedings of the Pacific Symposium on Biocomputing, volume 8, pages 17-28, 2003.
  • 5
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • January
    • Hidde de Jong. Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology. 9(1):67-103, January 2002.
    • (2002) Journal of Computational Biology , vol.9 , Issue.1 , pp. 67-103
    • de Jong, H.1
  • 9
    • 0029722015 scopus 로고    scopus 로고
    • Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation
    • Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 312-317, 1996.
    • (1996) Proceedings of the IEEE Congress on Evolutionary Computation , pp. 312-317
    • Hansen, N.1    Ostermeier, A.2
  • 11
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Dirk Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics. 19(17):2271-2282, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 12
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In Proceedings of the Pacific Symposium on Biocomputing, pages 175-186, 2002.
    • (2002) Proceedings of the Pacific Symposium on Biocomputing , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 13
    • 20744441547 scopus 로고    scopus 로고
    • Modularized learning of genetic interaction networks from biological annotations and mRNA expression data
    • Phil Hyoun Kao and Doheon Lee. Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Bioinformatics, 21(11):406, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 406
    • Hyoun Kao, P.1    Lee, D.2
  • 14
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • Shinichi Kikuchi, Daisuke Tominaga. Masanori Arita. Katsutoshi Takahashi, and Masaru Tomita. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics. 19(5):643-650, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 18
    • 4344596713 scopus 로고    scopus 로고
    • Isao Ono. Ryohei Yoshiaki Seike, Norihiko Ono, and Masahiko Matsui. An evolutionary algorithm taking account of mutual interactions among substances for inference of genetic networks. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 2060-2067, 2004.
    • Isao Ono. Ryohei Yoshiaki Seike, Norihiko Ono, and Masahiko Matsui. An evolutionary algorithm taking account of mutual interactions among substances for inference of genetic networks. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 2060-2067, 2004.
  • 20
    • 33847219098 scopus 로고    scopus 로고
    • Michael A. Savageau. 20 years of S-systems. In E.O. Voit, editor, Canonical Nonlinear Modeling. S-systems Approach to Understand Complexity, pages 1-44, 1991.
    • Michael A. Savageau. 20 years of S-systems. In E.O. Voit, editor, Canonical Nonlinear Modeling. S-systems Approach to Understand Complexity, pages 1-44, 1991.
  • 23
    • 35048844744 scopus 로고    scopus 로고
    • Iteratively inferring gene regulatory networks with virtual knockout experiments
    • Proceedings of the European Workshop on Evolutionary Bioinformatics. of
    • Christian Spieth, Felix Streichen, Nora Speer, and Andreas Zell. Iteratively inferring gene regulatory networks with virtual knockout experiments. In Proceedings of the European Workshop on Evolutionary Bioinformatics. volume 3005 of Lecture Notes in Computer Science, pages 102-111, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3005 , pp. 102-111
    • Spieth, C.1    Streichen, F.2    Speer, N.3    Zell, A.4
  • 25
    • 24344474513 scopus 로고    scopus 로고
    • Multi-objective model optimization for inferring gene regulatory networks
    • Eckart Zitzler Carlos A. Coello Coello, Arturo Hernndez Aguirre. editor, Proceedings of the Conference on Evolutionary Multi-Criterion Optimization, of
    • Christian Spieth. Felix Streichert, Nora Speer, and Andreas Zell. Multi-objective model optimization for inferring gene regulatory networks. In Eckart Zitzler Carlos A. Coello Coello, Arturo Hernndez Aguirre. editor, Proceedings of the Conference on Evolutionary Multi-Criterion Optimization, volume 3410 of Lecture Notes in Computer Science, pages 607-620, 2005.
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 607-620
    • Spieth, C.1    Streichert, F.2    Speer, N.3    Zell, A.4
  • 26
    • 0032077377 scopus 로고    scopus 로고
    • From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in escherichia coli
    • Denis Thieffry, A. Huerta, E. Perez-Rueda, and J. Collado-Vides. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in escherichia coli. BioEssays, 20:433-440, 1998.
    • (1998) BioEssays , vol.20 , pp. 433-440
    • Thieffry, D.1    Huerta, A.2    Perez-Rueda, E.3    Collado-Vides, J.4
  • 29
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • M. K. Stephen Yeung, Jesper Tegner. and James J. Collins. Reverse engineering gene networks using singular value decomposition and robust regression. In Proceedings of the National Academy of Science, volume 99, pages 6163-6168, 2002.
    • (2002) Proceedings of the National Academy of Science , vol.99 , pp. 6163-6168
    • Stephen Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 30
    • 0032863227 scopus 로고    scopus 로고
    • Large-scale gene expression data analysis: A new challenge to computational biologists
    • Michael Q. Zhang. Large-scale gene expression data analysis: A new challenge to computational biologists. Genome Research, 9(8):681-688, 1999.
    • (1999) Genome Research , vol.9 , Issue.8 , pp. 681-688
    • Zhang, M.Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.