메뉴 건너뛰기




Volumn 30, Issue 1, 2006, Pages 42-49

Model gene network by semi-fixed Bayesian network

Author keywords

Bayesian networks; Gene network; Hidden variable; Semi fixed network; Semi fixed structure EM learning algorithm

Indexed keywords

ALGORITHMS; CELLS; GENETIC ENGINEERING; MATHEMATICAL MODELS; PROTEINS; RNA; TISSUE;

EID: 27844517961     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2005.09.044     Document Type: Article
Times cited : (24)

References (48)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S., & Kuhara S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In PSB (pp. 17-28).
    • (1999) PSB , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 0030848624 scopus 로고    scopus 로고
    • A test case of correlation metric construction of a reaction pathway from measurements
    • A. Arkin, P. Shen, and J. Ross A test case of correlation metric construction of a reaction pathway from measurements Science 277 1997 1275 1279
    • (1997) Science , vol.277 , pp. 1275-1279
    • Arkin, A.1    Shen, P.2    Ross, J.3
  • 4
    • 0013225980 scopus 로고    scopus 로고
    • A framework for the analysis of dynamic processes based on Bayesian networks and case-based reasoning
    • M.A. Barrientos, and J. Vargas A framework for the analysis of dynamic processes based on Bayesian networks and case-based reasoning Expert Systems with Applications 15 1998 287 294
    • (1998) Expert Systems with Applications , vol.15 , pp. 287-294
    • Barrientos, M.A.1    Vargas, J.2
  • 5
    • 0002207004 scopus 로고    scopus 로고
    • Discovering the hidden structure of complex dynamic systems
    • Boyen, X., Friedman, N., & Koller, D. (1999). Discovering the hidden structure of complex dynamic systems. In UAI (pp. 91-100).
    • (1999) UAI , pp. 91-100
    • Boyen, X.1    Friedman, N.2    Koller, D.3
  • 6
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: How to put the function in genomics
    • P. Brazhnik, A. Fuente, and P. Mendes Gene networks: How to put the function in genomics Trends in Biotechnology 1 20 2002 467 472
    • (2002) Trends in Biotechnology , vol.1 , Issue.20 , pp. 467-472
    • Brazhnik, P.1    Fuente, A.2    Mendes, P.3
  • 8
    • 0032668662 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from exprimental data
    • Chen, T., Filkov, V., & Skiena, S. (1999). Identifying gene regulatory networks from exprimental data. In PSB (pp. 94-103).
    • (1999) PSB , pp. 94-103
    • Chen, T.1    Filkov, V.2    Skiena, S.3
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper, and E. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 12
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haeseleer, S. Liang, and R. Somogyi Genetic network inference: From co-expression clustering to reverse engineering Bioinformatics 16 2 2000 707 726
    • (2000) Bioinformatics , vol.16 , Issue.2 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 13
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'Haeseleer, P., Wen, X., Fuhrman, S., & Somogyi, R. (1999). Linear modeling of mRNA expression levels during CNS development and injury. In PSB (pp. 41-52).
    • (1999) PSB , pp. 41-52
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 14
    • 1842641459 scopus 로고    scopus 로고
    • Discovering hidden variables: A structure-based approach
    • Elidan, G., Lotner, N., Friedman, N., & Koller, D. (2000). Discovering hidden variables: A structure-based approach. In NIPS (pp. 479-485).
    • (2000) NIPS , pp. 479-485
    • Elidan, G.1    Lotner, N.2    Friedman, N.3    Koller, D.4
  • 17
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structure em algorithm
    • Friedman, N. (1998). The Bayesian structure EM algorithm. In UAI (pp. 129-138)
    • (1998) UAI , pp. 129-138
    • Friedman, N.1
  • 18
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman Inferring cellular networks using probabilistic graphical models Science 303 6 2004 799 805
    • (2004) Science , vol.303 , Issue.6 , pp. 799-805
    • Friedman, N.1
  • 19
    • 0033691754 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. In RECOMB (pp. 127-135).
    • (2000) RECOMB , pp. 127-135
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 21
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and yeast cell cycle
    • B. Futcher Transcriptional regulatory networks and yeast cell cycle Current Opinion in Cell Biology 14 2002 676 683
    • (2002) Current Opinion in Cell Biology , vol.14 , pp. 676-683
    • Futcher, B.1
  • 22
    • 0010365160 scopus 로고    scopus 로고
    • Probabilistic temporal reasoning and its application to fossil power plant operation
    • A. Gustavo, L. Sucar, and A. Villavicencio Probabilistic temporal reasoning and its application to fossil power plant operation Expert Systems with Applications 15 1998 317 324
    • (1998) Expert Systems with Applications , vol.15 , pp. 317-324
    • Gustavo, A.1    Sucar, L.2    Villavicencio, A.3
  • 23
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • A. Hartemink, D. Gifford, T. Jaakkola, and R. Young Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks In PSB (pp. 437-449) 2001
    • (2001) In PSB (Pp. 437-449)
    • Hartemink, A.1    Gifford, D.2    Jaakkola, T.3    Young, R.4
  • 24
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • J. Hasty, D. McMillen, F. Isaacs, and J. Collins Computational studies of gene regulatory networks: In numero molecular biology Nature Reviews Genetics 2 4 2001 268 279
    • (2001) Nature Reviews Genetics , vol.2 , Issue.4 , pp. 268-279
    • Hasty, J.1    McMillen, D.2    Isaacs, F.3    Collins, J.4
  • 25
    • 0032894060 scopus 로고    scopus 로고
    • The yeast proteome database (YPD): A model for the organization and presentation of genome-wide functional data
    • P. Hodges, A. McKee, B. Davis, W. Payne, and J. Garrels The yeast proteome database (YPD): A model for the organization and presentation of genome-wide functional data Nucleic Acids Research 27 1 1999 69 73
    • (1999) Nucleic Acids Research , vol.27 , Issue.1 , pp. 69-73
    • Hodges, P.1    McKee, A.2    Davis, B.3    Payne, W.4    Garrels, J.5
  • 26
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto, S., Goto, T., & Miyano, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In PSB (pp. 175-186).
    • (2002) PSB , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 27
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian network
    • Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., & Miyano, S. (2003). Combining microarrays and biological knowledge for estimating gene networks via Bayesian network. In CSB (pp. 104-113).
    • (2003) CSB , pp. 104-113
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 28
    • 0008415464 scopus 로고    scopus 로고
    • A Bayesian belief network-based advisory system for operational availability focused diagnosis of complex nuclear power systems
    • C.W. Kang, and M.W. Gola A Bayesian belief network-based advisory system for operational availability focused diagnosis of complex nuclear power systems Expert Systems with Applications 17 1 1999 21 32
    • (1999) Expert Systems with Applications , vol.17 , Issue.1 , pp. 21-32
    • Kang, C.W.1    Gola, M.W.2
  • 29
  • 31
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang, S., Fuhrman, S., & Somogyi, R. (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In PSB (pp. 18-20).
    • (1998) PSB , pp. 18-20
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 32
    • 16244373943 scopus 로고    scopus 로고
    • Learning multi-time delay gene network using Bayesian network framework
    • Liu, T. F., Sung, W. K., & Mittal, A. (2004). Learning multi-time delay gene network using Bayesian network framework. In ICTAI (pp. 640-645).
    • (2004) ICTAI , pp. 640-645
    • Liu, T.F.1    Sung, W.K.2    Mittal, A.3
  • 33
    • 17044444207 scopus 로고    scopus 로고
    • Binary and graded responses in gene networks
    • M. Louis, A. Louis, and Becskei Binary and graded responses in gene networks Science STKE 143 2002 pe33
    • (2002) Science STKE , vol.143 , pp. 33
    • Louis, M.1    Louis, A.2    Becskei3
  • 34
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • University of California, Berkeley
    • Murphy, K., & Mian, S. (1999). Modelling gene expression data using dynamic Bayesian networks. Technical report, University of California, Berkeley.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 35
    • 0041508379 scopus 로고    scopus 로고
    • Crimes analysis software: 'Pins in maps', clustering and bayes net prediction
    • G. Oatley, and B. Ewart Crimes analysis software: 'Pins in maps', clustering and bayes net prediction Expert Systems with Applications 25 2003 569 588
    • (2003) Expert Systems with Applications , vol.25 , pp. 569-588
    • Oatley, G.1    Ewart, B.2
  • 36
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perburbed expression profiles
    • D. Pe'er, A. Regev, G. Elidan, and N. Friedman Inferring subnetworks from perburbed expression profiles Bioinformatics 17 Suppl. 1 2001 S215 S224
    • (2001) Bioinformatics , vol.17 , Issue.1
    • Pe'Er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 37
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, and D. Koller Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data Nature Genetics 34 2 2003 166 176
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'Er, D.4    Botstein, D.5    Koller, D.6
  • 38
    • 17944372930 scopus 로고    scopus 로고
    • Serial regulation of transcriptional regulators in the yeast cell cycle
    • I. Simon, J. Barnett, N. Hannett, C. Harbison, N. Rinaldi, and T. Volkert Serial regulation of transcriptional regulators in the yeast cell cycle Cell 106 6 2001 697 708
    • (2001) Cell , vol.106 , Issue.6 , pp. 697-708
    • Simon, I.1    Barnett, J.2    Hannett, N.3    Harbison, C.4    Rinaldi, N.5    Volkert, T.6
  • 39
    • 0034564415 scopus 로고    scopus 로고
    • Linear modeling of genetic networks from experimental data
    • Someren, E., Wessels, L., & Reinders, M. (2000). Linear modeling of genetic networks from experimental data. In ISMB (pp. 355-366).
    • (2000) ISMB , pp. 355-366
    • Someren, E.1    Wessels, L.2    Reinders, M.3
  • 40
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. Spellman, G. Sherlock, and B. Futcher Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Molecular Biology of the Cell 9 3273 1998 3297
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.3273 , pp. 3297
    • Spellman, P.1    Sherlock, G.2    Futcher, B.3
  • 41
    • 0348117206 scopus 로고    scopus 로고
    • Interactive structural learning of Bayesian networks
    • L.E. Sucar, and M.A. Miriam Interactive structural learning of Bayesian networks Expert Systems with Applications 15 3-4 1998 325 332
    • (1998) Expert Systems with Applications , vol.15 , Issue.3-4 , pp. 325-332
    • Sucar, L.E.1    Miriam, M.A.2
  • 43
    • 0036177681 scopus 로고    scopus 로고
    • Estimating coarse gene network structure from large-scale gene perturbation data
    • A. Wagner Estimating coarse gene network structure from large-scale gene perturbation data Genome Research 12 2 2002 309 315
    • (2002) Genome Research , vol.12 , Issue.2 , pp. 309-315
    • Wagner, A.1
  • 44
    • 0034104824 scopus 로고    scopus 로고
    • Course-grained reverse engineering of genetic regulatory networks
    • M. Wahde, and J. Hertz Course-grained reverse engineering of genetic regulatory networks Biosystems 55 2000 129 136
    • (2000) Biosystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 46
    • 0035228396 scopus 로고    scopus 로고
    • A comparison of genetic network model
    • Wessels, L., Someren, E. V., & Reinders, M. (2001). A comparison of genetic network model. In PSB, Vol. 6 (pp. 508-519).
    • (2001) PSB , vol.6 , pp. 508-519
    • Wessels, L.1    Someren, E.V.2    Reinders, M.3
  • 48
    • 0035221090 scopus 로고    scopus 로고
    • Development of a system for the inference of large scale genetic networks
    • Yaki, M., Tominaga, D., Okamoto, M., Watanabe, S., & Eguchi, Y. (2001). Development of a system for the inference of large scale genetic networks. In PSB (pp. 446-458).
    • (2001) PSB , pp. 446-458
    • Yaki, M.1    Tominaga, D.2    Okamoto, M.3    Watanabe, S.4    Eguchi, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.