-
1
-
-
2442430265
-
Multiple classifier combination for face-based identity verification
-
Czyz J., Kittler J., and Vandendorpe L. Multiple classifier combination for face-based identity verification. Pattern Recognition 37 (2004) 1459-1469
-
(2004)
Pattern Recognition
, vol.37
, pp. 1459-1469
-
-
Czyz, J.1
Kittler, J.2
Vandendorpe, L.3
-
2
-
-
32044473249
-
Using diversity of errors for selecting members of a committee classifier
-
Aksela M., and Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
-
(2006)
Pattern Recognition
, vol.39
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
3
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832-844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
4
-
-
33646005516
-
-
Q.H. Hu, D.R. Yu, M.Y. Wang, in: Constructing Rough Decision Forests, D. Slezak et al. (Eds.), RSFDGrC 2005, Lecture Notes in Artificial Intelligence, vol. 3642, 2005, pp. 147-156.
-
-
-
-
5
-
-
0029244593
-
Recognition of handwritten numerals with multiple feature and multistage classifier
-
Cao J., Ahmodi M., and Shridhar M. Recognition of handwritten numerals with multiple feature and multistage classifier. Pattern Recognition 28 (1995) 153-160
-
(1995)
Pattern Recognition
, vol.28
, pp. 153-160
-
-
Cao, J.1
Ahmodi, M.2
Shridhar, M.3
-
6
-
-
17644363009
-
Automatic identification of music performers with learning ensembles
-
Gerhard Widmer
-
Stamatatos a E., and Gerhard Widmer. Automatic identification of music performers with learning ensembles. Artif. Intell. 165 (2005) 37-56
-
(2005)
Artif. Intell.
, vol.165
, pp. 37-56
-
-
Stamatatos a, E.1
-
7
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 (2000) 139-157
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
10
-
-
0000749354
-
Neural network ensembles
-
Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge, MA
-
Krogh A., and Vedelsby J. Neural network ensembles. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems (1995), MIT Press, Cambridge, MA 231-238
-
(1995)
Advances in Neural Information Processing Systems
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
11
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
12
-
-
34547690985
-
Neural network ensembles: evaluation of aggregation algorithms
-
Granitto P.M., Verdes P.F., and Ceccatto H.A. Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 16 (2005) 3139-3162
-
(2005)
Artif. Intell.
, vol.16
, pp. 3139-3162
-
-
Granitto, P.M.1
Verdes, P.F.2
Ceccatto, H.A.3
-
13
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 45 (2001) 5-32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
15
-
-
0002994348
-
Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks
-
Morgan Kaufmann, San Mateo, CA
-
Maclin R., and Shavlik J.W. Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks. Proceedings of the 14th international joint conference on artificial intelligence (1995), Morgan Kaufmann, San Mateo, CA 524-530
-
(1995)
Proceedings of the 14th international joint conference on artificial intelligence
, pp. 524-530
-
-
Maclin, R.1
Shavlik, J.W.2
-
17
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
19
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund Y. Boosting a weak learning algorithm by majority. Inform. Comput. 121 (1996) 256-285
-
(1996)
Inform. Comput.
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
21
-
-
0242515926
-
Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
-
Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
-
(2003)
Pattern Recognition
, vol.36
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
22
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Zhou Z.H., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. SMC-Part B: Cybernetics 35 (2005) 725-735
-
(2005)
IEEE Trans. SMC-Part B: Cybernetics
, vol.35
, pp. 725-735
-
-
Zhou, Z.H.1
Yu, Y.2
-
24
-
-
23844545305
-
Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
-
Gunter S., and Bunke H. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Lett. 25 (2004) 1323-1336
-
(2004)
Pattern Recognition Lett.
, vol.25
, pp. 1323-1336
-
-
Gunter, S.1
Bunke, H.2
-
25
-
-
29144445856
-
Toward a successful CRM: variable selection, sampling, and ensemble
-
Kim Y. Toward a successful CRM: variable selection, sampling, and ensemble. Decision Support Systems 41 (2006) 542-553
-
(2006)
Decision Support Systems
, vol.41
, pp. 542-553
-
-
Kim, Y.1
-
27
-
-
34547697164
-
-
L. Polkowski, T.Y. Lin, S. Tsumoto (Eds.), in: Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems (Studies in Fuzziness and Soft Computing), vol. 56, Physica-Verlag, 2000.
-
-
-
-
28
-
-
0035505464
-
Reduction algorithms based on discernibility matrix: the ordered attributes method
-
Wang J., and Wang J. Reduction algorithms based on discernibility matrix: the ordered attributes method. J. Comput. Sci. Technol. 16 6 (2001) 489-504
-
(2001)
J. Comput. Sci. Technol.
, vol.16
, Issue.6
, pp. 489-504
-
-
Wang, J.1
Wang, J.2
-
29
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Roman W., and Skowron S. Rough set methods in feature selection and recognition. Pattern Recognition Lett. 24 (2003) 833-849
-
(2003)
Pattern Recognition Lett.
, vol.24
, pp. 833-849
-
-
Roman, W.1
Skowron, S.2
-
30
-
-
4444310339
-
Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer
-
Hassanien A.E. Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer. J. Am. Soc. Inform. Sci. Technol. 55 (2004) 954-962
-
(2004)
J. Am. Soc. Inform. Sci. Technol.
, vol.55
, pp. 954-962
-
-
Hassanien, A.E.1
-
31
-
-
10944249572
-
Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
-
Jensen R., and Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowledge Data Eng. 16 (2004) 1547-1571
-
(2004)
IEEE Trans. Knowledge Data Eng.
, vol.16
, pp. 1547-1571
-
-
Jensen, R.1
Shen, Q.2
-
32
-
-
32644440353
-
Information-preserving hybrid data reduction based on fuzzy rough techniques
-
Hu Q., Yu D., and Xie Z. Information-preserving hybrid data reduction based on fuzzy rough techniques. Pattern Recognition Lett. 27 (2006) 414-423
-
(2006)
Pattern Recognition Lett.
, vol.27
, pp. 414-423
-
-
Hu, Q.1
Yu, D.2
Xie, Z.3
-
34
-
-
2442528339
-
Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
-
Shen Q., and Jensen R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition 37 (2004) 1351-1363
-
(2004)
Pattern Recognition
, vol.37
, pp. 1351-1363
-
-
Shen, Q.1
Jensen, R.2
-
35
-
-
84869009125
-
Hybrid data reduction for classification with a fuzzy-rough set technique
-
Hu Q., Yu D., and Xie Z. Hybrid data reduction for classification with a fuzzy-rough set technique. Fifth SIAM Conference on Data Mining (2005)
-
(2005)
Fifth SIAM Conference on Data Mining
-
-
Hu, Q.1
Yu, D.2
Xie, Z.3
-
36
-
-
17444379002
-
On fuzzy-rough sets approach to feature selection
-
Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recognition Lett. 26 (2005) 965-975
-
(2005)
Pattern Recognition Lett.
, vol.26
, pp. 965-975
-
-
Bhatt, R.B.1
Gopal, M.2
-
38
-
-
0029305145
-
Rough set reduction of attributes and their domains for neural networks
-
Jelonek J., Krawiec K., and Slowinski R. Rough set reduction of attributes and their domains for neural networks. Comput. Intell. 11 (1995) 339-347
-
(1995)
Comput. Intell.
, vol.11
, pp. 339-347
-
-
Jelonek, J.1
Krawiec, K.2
Slowinski, R.3
-
39
-
-
0037564105
-
Rough reduction in algebra view and information view
-
Wang G.Y. Rough reduction in algebra view and information view. Int. J. Intell. Systems 18 (2003) 679-688
-
(2003)
Int. J. Intell. Systems
, vol.18
, pp. 679-688
-
-
Wang, G.Y.1
-
40
-
-
27244454047
-
-
Y.M. Sun, M.S. Kamel, A.K.C. Wong, Empirical study on weighted voting multiple classifiers, Lecture Notes in Computer Science, vol. 3686, 2005, pp. 335-344.
-
-
-
-
41
-
-
34547699144
-
-
C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases. Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998, 〈http://www.ics.uci.edu/~mlearn/MLRepository.html〉.
-
-
-
-
42
-
-
6444238786
-
Selected tree classifier combination based on both accuracy and error diversity
-
Shin H.W., and Sohn S.Y. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition 38 (2005) 191-197
-
(2005)
Pattern Recognition
, vol.38
, pp. 191-197
-
-
Shin, H.W.1
Sohn, S.Y.2
-
43
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002) 239-263
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
-
44
-
-
10444224738
-
Diversity measures for multiple classifier system analysis and design
-
Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
-
(2005)
Information Fusion
, vol.6
, pp. 21-36
-
-
Windeatt, T.1
-
45
-
-
32044473249
-
Using diversity of errors for selecting members of a committee classifier
-
Aksela M., and Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
-
(2006)
Pattern Recognition
, vol.39
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
46
-
-
24944453466
-
Stopping criteria for ensemble of evolutionary artificial neural networks
-
Nguyen M.H., Abbass H.A., and McKay R.I. Stopping criteria for ensemble of evolutionary artificial neural networks. Appl. Soft Comput. 6 (2005) 100-107
-
(2005)
Appl. Soft Comput.
, vol.6
, pp. 100-107
-
-
Nguyen, M.H.1
Abbass, H.A.2
McKay, R.I.3
-
47
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37 (1999) 297-336
-
(1999)
Mach. Learn.
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
48
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles. Mach. Learn. 51 (2003) 181-207
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
50
-
-
0041967057
-
Research on efficient algorithms for rough set methods
-
Liu S., Sheng Q., Wu B., Shi Z., and Hu F. Research on efficient algorithms for rough set methods. Chinese J. Comput. 26 5 (2003) 1-6
-
(2003)
Chinese J. Comput.
, vol.26
, Issue.5
, pp. 1-6
-
-
Liu, S.1
Sheng, Q.2
Wu, B.3
Shi, Z.4
Hu, F.5
|