메뉴 건너뛰기




Volumn 40, Issue 12, 2007, Pages 3728-3739

EROS: Ensemble rough subspaces

Author keywords

Attribute reduction; Ensemble learning; Multiple classifier system; Rough set; Selective ensemble

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); PATTERN RECOGNITION; RANDOM PROCESSES; ROUGH SET THEORY;

EID: 34547654182     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.04.022     Document Type: Article
Times cited : (86)

References (50)
  • 1
    • 2442430265 scopus 로고    scopus 로고
    • Multiple classifier combination for face-based identity verification
    • Czyz J., Kittler J., and Vandendorpe L. Multiple classifier combination for face-based identity verification. Pattern Recognition 37 (2004) 1459-1469
    • (2004) Pattern Recognition , vol.37 , pp. 1459-1469
    • Czyz, J.1    Kittler, J.2    Vandendorpe, L.3
  • 2
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M., and Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
    • (2006) Pattern Recognition , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 3
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 4
    • 33646005516 scopus 로고    scopus 로고
    • Q.H. Hu, D.R. Yu, M.Y. Wang, in: Constructing Rough Decision Forests, D. Slezak et al. (Eds.), RSFDGrC 2005, Lecture Notes in Artificial Intelligence, vol. 3642, 2005, pp. 147-156.
  • 5
    • 0029244593 scopus 로고
    • Recognition of handwritten numerals with multiple feature and multistage classifier
    • Cao J., Ahmodi M., and Shridhar M. Recognition of handwritten numerals with multiple feature and multistage classifier. Pattern Recognition 28 (1995) 153-160
    • (1995) Pattern Recognition , vol.28 , pp. 153-160
    • Cao, J.1    Ahmodi, M.2    Shridhar, M.3
  • 6
    • 17644363009 scopus 로고    scopus 로고
    • Automatic identification of music performers with learning ensembles
    • Gerhard Widmer
    • Stamatatos a E., and Gerhard Widmer. Automatic identification of music performers with learning ensembles. Artif. Intell. 165 (2005) 37-56
    • (2005) Artif. Intell. , vol.165 , pp. 37-56
    • Stamatatos a, E.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 (2000) 139-157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 9
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 4 (1992) 1-58
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 10
    • 0000749354 scopus 로고
    • Neural network ensembles
    • Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge, MA
    • Krogh A., and Vedelsby J. Neural network ensembles. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems (1995), MIT Press, Cambridge, MA 231-238
    • (1995) Advances in Neural Information Processing Systems , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 34547690985 scopus 로고    scopus 로고
    • Neural network ensembles: evaluation of aggregation algorithms
    • Granitto P.M., Verdes P.F., and Ceccatto H.A. Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 16 (2005) 3139-3162
    • (2005) Artif. Intell. , vol.16 , pp. 3139-3162
    • Granitto, P.M.1    Verdes, P.F.2    Ceccatto, H.A.3
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 45 (2001) 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 15
    • 0002994348 scopus 로고
    • Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks
    • Morgan Kaufmann, San Mateo, CA
    • Maclin R., and Shavlik J.W. Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks. Proceedings of the 14th international joint conference on artificial intelligence (1995), Morgan Kaufmann, San Mateo, CA 524-530
    • (1995) Proceedings of the 14th international joint conference on artificial intelligence , pp. 524-530
    • Maclin, R.1    Shavlik, J.W.2
  • 17
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 19
    • 58149321460 scopus 로고    scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. Boosting a weak learning algorithm by majority. Inform. Comput. 121 (1996) 256-285
    • (1996) Inform. Comput. , vol.121 , pp. 256-285
    • Freund, Y.1
  • 21
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
    • (2003) Pattern Recognition , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 22
    • 24644441048 scopus 로고    scopus 로고
    • Ensembling local learners through multimodal perturbation
    • Zhou Z.H., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. SMC-Part B: Cybernetics 35 (2005) 725-735
    • (2005) IEEE Trans. SMC-Part B: Cybernetics , vol.35 , pp. 725-735
    • Zhou, Z.H.1    Yu, Y.2
  • 23
  • 24
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
    • Gunter S., and Bunke H. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Lett. 25 (2004) 1323-1336
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1323-1336
    • Gunter, S.1    Bunke, H.2
  • 25
    • 29144445856 scopus 로고    scopus 로고
    • Toward a successful CRM: variable selection, sampling, and ensemble
    • Kim Y. Toward a successful CRM: variable selection, sampling, and ensemble. Decision Support Systems 41 (2006) 542-553
    • (2006) Decision Support Systems , vol.41 , pp. 542-553
    • Kim, Y.1
  • 27
    • 34547697164 scopus 로고    scopus 로고
    • L. Polkowski, T.Y. Lin, S. Tsumoto (Eds.), in: Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems (Studies in Fuzziness and Soft Computing), vol. 56, Physica-Verlag, 2000.
  • 28
    • 0035505464 scopus 로고    scopus 로고
    • Reduction algorithms based on discernibility matrix: the ordered attributes method
    • Wang J., and Wang J. Reduction algorithms based on discernibility matrix: the ordered attributes method. J. Comput. Sci. Technol. 16 6 (2001) 489-504
    • (2001) J. Comput. Sci. Technol. , vol.16 , Issue.6 , pp. 489-504
    • Wang, J.1    Wang, J.2
  • 29
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Roman W., and Skowron S. Rough set methods in feature selection and recognition. Pattern Recognition Lett. 24 (2003) 833-849
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 833-849
    • Roman, W.1    Skowron, S.2
  • 30
    • 4444310339 scopus 로고    scopus 로고
    • Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer
    • Hassanien A.E. Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer. J. Am. Soc. Inform. Sci. Technol. 55 (2004) 954-962
    • (2004) J. Am. Soc. Inform. Sci. Technol. , vol.55 , pp. 954-962
    • Hassanien, A.E.1
  • 31
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
    • Jensen R., and Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowledge Data Eng. 16 (2004) 1547-1571
    • (2004) IEEE Trans. Knowledge Data Eng. , vol.16 , pp. 1547-1571
    • Jensen, R.1    Shen, Q.2
  • 32
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy rough techniques
    • Hu Q., Yu D., and Xie Z. Information-preserving hybrid data reduction based on fuzzy rough techniques. Pattern Recognition Lett. 27 (2006) 414-423
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 414-423
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 34
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Shen Q., and Jensen R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition 37 (2004) 1351-1363
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 35
    • 84869009125 scopus 로고    scopus 로고
    • Hybrid data reduction for classification with a fuzzy-rough set technique
    • Hu Q., Yu D., and Xie Z. Hybrid data reduction for classification with a fuzzy-rough set technique. Fifth SIAM Conference on Data Mining (2005)
    • (2005) Fifth SIAM Conference on Data Mining
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 36
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recognition Lett. 26 (2005) 965-975
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 38
    • 0029305145 scopus 로고
    • Rough set reduction of attributes and their domains for neural networks
    • Jelonek J., Krawiec K., and Slowinski R. Rough set reduction of attributes and their domains for neural networks. Comput. Intell. 11 (1995) 339-347
    • (1995) Comput. Intell. , vol.11 , pp. 339-347
    • Jelonek, J.1    Krawiec, K.2    Slowinski, R.3
  • 39
    • 0037564105 scopus 로고    scopus 로고
    • Rough reduction in algebra view and information view
    • Wang G.Y. Rough reduction in algebra view and information view. Int. J. Intell. Systems 18 (2003) 679-688
    • (2003) Int. J. Intell. Systems , vol.18 , pp. 679-688
    • Wang, G.Y.1
  • 40
    • 27244454047 scopus 로고    scopus 로고
    • Y.M. Sun, M.S. Kamel, A.K.C. Wong, Empirical study on weighted voting multiple classifiers, Lecture Notes in Computer Science, vol. 3686, 2005, pp. 335-344.
  • 41
    • 34547699144 scopus 로고    scopus 로고
    • C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases. Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998, 〈http://www.ics.uci.edu/~mlearn/MLRepository.html〉.
  • 42
    • 6444238786 scopus 로고    scopus 로고
    • Selected tree classifier combination based on both accuracy and error diversity
    • Shin H.W., and Sohn S.Y. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition 38 (2005) 191-197
    • (2005) Pattern Recognition , vol.38 , pp. 191-197
    • Shin, H.W.1    Sohn, S.Y.2
  • 43
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002) 239-263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 44
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
    • (2005) Information Fusion , vol.6 , pp. 21-36
    • Windeatt, T.1
  • 45
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M., and Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
    • (2006) Pattern Recognition , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 46
    • 24944453466 scopus 로고    scopus 로고
    • Stopping criteria for ensemble of evolutionary artificial neural networks
    • Nguyen M.H., Abbass H.A., and McKay R.I. Stopping criteria for ensemble of evolutionary artificial neural networks. Appl. Soft Comput. 6 (2005) 100-107
    • (2005) Appl. Soft Comput. , vol.6 , pp. 100-107
    • Nguyen, M.H.1    Abbass, H.A.2    McKay, R.I.3
  • 47
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37 (1999) 297-336
    • (1999) Mach. Learn. , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 48
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles. Mach. Learn. 51 (2003) 181-207
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 50
    • 0041967057 scopus 로고    scopus 로고
    • Research on efficient algorithms for rough set methods
    • Liu S., Sheng Q., Wu B., Shi Z., and Hu F. Research on efficient algorithms for rough set methods. Chinese J. Comput. 26 5 (2003) 1-6
    • (2003) Chinese J. Comput. , vol.26 , Issue.5 , pp. 1-6
    • Liu, S.1    Sheng, Q.2    Wu, B.3    Shi, Z.4    Hu, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.