메뉴 건너뛰기




Volumn 73, Issue 4-6, 2010, Pages 727-739

Regression based D-optimality experimental design for sparse kernel density estimation

Author keywords

D optimality; Optimal experimental design; Orthogonal forward regression; Parzen window estimate; Probability density function; Sparse kernel modelling

Indexed keywords

D-OPTIMALITY; FORWARD REGRESSION; OPTIMAL EXPERIMENTAL DESIGNS; PARZEN WINDOW ESTIMATE; SPARSE KERNELS;

EID: 75749084353     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.11.002     Document Type: Article
Times cited : (9)

References (48)
  • 5
    • 0033345674 scopus 로고    scopus 로고
    • Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability
    • Wang H. Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Autom. Control 44 (1998) 2103-2107
    • (1998) IEEE Trans. Autom. Control , vol.44 , pp. 2103-2107
    • Wang, H.1
  • 6
    • 0035370004 scopus 로고    scopus 로고
    • Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels
    • Chen S., Samingan A.K., Mulgrew B., and Hanzo L. Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels. IEEE Trans. Signal Process. 49 (2001) 1240-1247
    • (2001) IEEE Trans. Signal Process. , vol.49 , pp. 1240-1247
    • Chen, S.1    Samingan, A.K.2    Mulgrew, B.3    Hanzo, L.4
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 (1977) 1-38
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 9
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • Technical Report ICSI-TR-97-021, University of Berkeley, USA
    • J.A. Bilmes, A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Technical Report ICSI-TR-97-021, University of Berkeley, USA, 1997.
    • (1997)
    • Bilmes, J.A.1
  • 11
    • 0032098246 scopus 로고    scopus 로고
    • Robust maximum likelihood training of heteroscedastic probabilistic neural networks
    • Yang Z.R., and Chen S. Robust maximum likelihood training of heteroscedastic probabilistic neural networks. Neural Networks 11 (1998) 739-747
    • (1998) Neural Networks , vol.11 , pp. 739-747
    • Yang, Z.R.1    Chen, S.2
  • 12
    • 15844362098 scopus 로고    scopus 로고
    • Robust Bayesian mixture modelling
    • Svensén M., and Bishop C.M. Robust Bayesian mixture modelling. Neurocomputing 64 (2005) 235-252
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svensén, M.1    Bishop, C.M.2
  • 14
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1066-1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1066-1076
    • Parzen, E.1
  • 16
    • 75749103384 scopus 로고    scopus 로고
    • S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report A.I. Memo No. 1653, MIT AI Lab, USA, 1999.
    • S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report A.I. Memo No. 1653, MIT AI Lab, USA, 1999.
  • 17
    • 84898937307 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • Solla S., Leen T., and Müller K.R. (Eds), MIT Press, Cambridge, MA
    • Vapnik V., and Mukherjee S. Support vector method for multivariate density estimation. In: Solla S., Leen T., and Müller K.R. (Eds). Advances in Neural Information Processing Systems (2000), MIT Press, Cambridge, MA 659-665
    • (2000) Advances in Neural Information Processing Systems , pp. 659-665
    • Vapnik, V.1    Mukherjee, S.2
  • 19
    • 0142039770 scopus 로고    scopus 로고
    • Probability density estimation from optimally condensed data samples
    • Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1253-1264
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1253-1264
    • Girolami, M.1    He, C.2
  • 20
    • 3442875753 scopus 로고    scopus 로고
    • Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, Southampton, UK, August
    • A. Choudhury, Fast machine learning algorithms for large data, Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, Southampton, UK, August 2002.
    • (2002) Fast machine learning algorithms for large data
    • Choudhury, A.1
  • 21
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Chen S., Hong X., and Harris C.J. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 (2003) 1029-1036
    • (2003) IEEE Trans. Autom. Control , vol.48 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 22
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 898-911
    • (2004) IEEE Trans. Syst. Man Cybern. Part B , vol.34 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 23
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 1708-1717
    • (2004) IEEE Trans. Syst. Man Cybern. Part B , vol.34 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 24
    • 38649088632 scopus 로고    scopus 로고
    • An orthogonal forward regression techniques for sparse kernel density estimation
    • Chen S., Hong X., and Harris C.J. An orthogonal forward regression techniques for sparse kernel density estimation. Neurocomputing 71 (2008) 931-943
    • (2008) Neurocomputing , vol.71 , pp. 931-943
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 25
    • 75749089278 scopus 로고    scopus 로고
    • F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report MS-CIS-02-19, University of Pennsylvania, USA, 2002.
    • F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report MS-CIS-02-19, University of Pennsylvania, USA, 2002.
  • 26
    • 39549091331 scopus 로고    scopus 로고
    • A forward-constrained regression algorithm for sparse kernel density estimation
    • Hong X., Chen S., and Harris C.J. A forward-constrained regression algorithm for sparse kernel density estimation. IEEE Trans. Neural Networks 19 (2008) 193-1981
    • (2008) IEEE Trans. Neural Networks , vol.19 , pp. 193-1981
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 28
    • 0035502839 scopus 로고    scopus 로고
    • Neurofuzzy design and model construction of nonlinear dynamical processes from data
    • Hong X., and Harris C.J. Neurofuzzy design and model construction of nonlinear dynamical processes from data. IEE Proc. Control Theory Appl. 148 (2001) 530-538
    • (2001) IEE Proc. Control Theory Appl. , vol.148 , pp. 530-538
    • Hong, X.1    Harris, C.J.2
  • 29
    • 0035271447 scopus 로고    scopus 로고
    • Nonlinear model structure detection using optimum design and orthogonal least squares
    • Hong X., and Harris C.J. Nonlinear model structure detection using optimum design and orthogonal least squares. IEEE Trans. Neural Networks 12 (2001) 435-439
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 435-439
    • Hong, X.1    Harris, C.J.2
  • 30
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
    • Hong X., and Harris C.J. Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Trans. Neural Networks 13 (2002) 1245-1250
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1245-1250
    • Hong, X.1    Harris, C.J.2
  • 32
    • 0000629975 scopus 로고
    • Cross validation choice and assessment of statistical predictions
    • Stone M. Cross validation choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36 (1974) 111-147
    • (1974) J. R. Stat. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 34
    • 75749085422 scopus 로고    scopus 로고
    • Glivenko-Cantelli theorem. [Online] Available 〈http://en.wikipedia.org/wiki/Glivenko-Cantelli_theorem〉.
    • Glivenko-Cantelli theorem. [Online] Available 〈http://en.wikipedia.org/wiki/Glivenko-Cantelli_theorem〉.
  • 36
    • 0029343956 scopus 로고
    • Fast orthogonal least squares algorithm for efficient subset model selection
    • Chen S., and Wigger J. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Trans. Signal Process. 43 (1995) 1713-1715
    • (1995) IEEE Trans. Signal Process. , vol.43 , pp. 1713-1715
    • Chen, S.1    Wigger, J.2
  • 38
    • 75749153009 scopus 로고    scopus 로고
    • Available
    • [Online] Available 〈http://www.stats.ox.ac.uk/PRNN〉.
  • 39
    • 75749118976 scopus 로고    scopus 로고
    • Available
    • [Online] Available 〈http://ida.first.fhg.de/projects/bench/benchmarks.htm〉.
  • 41
    • 27144453355 scopus 로고    scopus 로고
    • Orthogonal forward selection for constructing the radial basis function network with tunable nodes
    • Hefei, China, August 23-26
    • S. Chen, X. Hong, C.J. Harris, Orthogonal forward selection for constructing the radial basis function network with tunable nodes, in: Proceedings of the 2005 International Conference Intelligent Computing, Hefei, China, August 23-26, 2005, pp. 777-786.
    • (2005) Proceedings of the 2005 International Conference Intelligent Computing , pp. 777-786
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 42
    • 38349164281 scopus 로고    scopus 로고
    • Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate
    • Vancouver, Canada, July 16-21
    • S. Chen, X. Hong, C.J. Harris, Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate, in: Proceedings of the 2006 International Joint Conference on Neural Networks, Vancouver, Canada, July 16-21, 2006, pp. 6390-6394.
    • (2006) Proceedings of the 2006 International Joint Conference on Neural Networks , pp. 6390-6394
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 43
    • 34248656230 scopus 로고    scopus 로고
    • Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel mode
    • Wang X.X., Chen S., Lowe D., and Harris C.J. Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel mode. Int. J. Modelling, Identification Control 1 (2006) 245-256
    • (2006) Int. J. Modelling, Identification Control , vol.1 , pp. 245-256
    • Wang, X.X.1    Chen, S.2    Lowe, D.3    Harris, C.J.4
  • 44
    • 33750333148 scopus 로고    scopus 로고
    • Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
    • Wang X.X., Chen S., Lowe D., and Harris C.J. Sparse support vector regression based on orthogonal forward selection for the generalised kernel model. Neurocomputing 70 (2006) 462-474
    • (2006) Neurocomputing , vol.70 , pp. 462-474
    • Wang, X.X.1    Chen, S.2    Lowe, D.3    Harris, C.J.4
  • 45
    • 39549096279 scopus 로고    scopus 로고
    • A new Jacobian matrix for optimal learning of single-layer neural networks
    • Peng J.-X., Li G., and Irwin G.W. A new Jacobian matrix for optimal learning of single-layer neural networks. IEEE Trans. Neural Networks 19 (2008) 119-129
    • (2008) IEEE Trans. Neural Networks , vol.19 , pp. 119-129
    • Peng, J.-X.1    Li, G.2    Irwin, G.W.3
  • 46
    • 64049119709 scopus 로고    scopus 로고
    • Construction of tunable radial basis function networks using orthogonal forward selection
    • Chen S., Hong X., Luk B.L., and Harris C.J. Construction of tunable radial basis function networks using orthogonal forward selection. IEEE Trans. Syst. Man Cybern. Part B 39 (2009) 457-466
    • (2009) IEEE Trans. Syst. Man Cybern. Part B , vol.39 , pp. 457-466
    • Chen, S.1    Hong, X.2    Luk, B.L.3    Harris, C.J.4
  • 47
    • 63449091970 scopus 로고    scopus 로고
    • Two-stage mixed discretecontinuous identification of radial basis function (RBF) neural models for nonlinear systems
    • Li K., Peng J.-X., and Bai E.-W. Two-stage mixed discretecontinuous identification of radial basis function (RBF) neural models for nonlinear systems. IEEE Trans. Circuits Syst. Part I 56 (2009) 630-643
    • (2009) IEEE Trans. Circuits Syst. Part I , vol.56 , pp. 630-643
    • Li, K.1    Peng, J.-X.2    Bai, E.-W.3
  • 48
    • 77954759393 scopus 로고    scopus 로고
    • Probability density estimation with tunable kernels using orthogonal forward regression
    • to appear
    • S. Chen, X. Hong, C.J. Harris, Probability density estimation with tunable kernels using orthogonal forward regression, IEEE Trans. Syst. Man Cybern. Part B (2010), to appear.
    • IEEE Trans. Syst. Man Cybern. Part B (2010)
    • Chen, S.1    Hong, X.2    Harris, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.