-
5
-
-
0033345674
-
Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability
-
Wang H. Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Autom. Control 44 (1998) 2103-2107
-
(1998)
IEEE Trans. Autom. Control
, vol.44
, pp. 2103-2107
-
-
Wang, H.1
-
6
-
-
0035370004
-
Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels
-
Chen S., Samingan A.K., Mulgrew B., and Hanzo L. Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels. IEEE Trans. Signal Process. 49 (2001) 1240-1247
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 1240-1247
-
-
Chen, S.1
Samingan, A.K.2
Mulgrew, B.3
Hanzo, L.4
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 (1977) 1-38
-
(1977)
J. R. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
0003857778
-
A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
-
Technical Report ICSI-TR-97-021, University of Berkeley, USA
-
J.A. Bilmes, A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Technical Report ICSI-TR-97-021, University of Berkeley, USA, 1997.
-
(1997)
-
-
Bilmes, J.A.1
-
11
-
-
0032098246
-
Robust maximum likelihood training of heteroscedastic probabilistic neural networks
-
Yang Z.R., and Chen S. Robust maximum likelihood training of heteroscedastic probabilistic neural networks. Neural Networks 11 (1998) 739-747
-
(1998)
Neural Networks
, vol.11
, pp. 739-747
-
-
Yang, Z.R.1
Chen, S.2
-
12
-
-
15844362098
-
Robust Bayesian mixture modelling
-
Svensén M., and Bishop C.M. Robust Bayesian mixture modelling. Neurocomputing 64 (2005) 235-252
-
(2005)
Neurocomputing
, vol.64
, pp. 235-252
-
-
Svensén, M.1
Bishop, C.M.2
-
14
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1066-1076
-
(1962)
Ann. Math. Stat.
, vol.33
, pp. 1066-1076
-
-
Parzen, E.1
-
15
-
-
0001873884
-
Support vector density estimation
-
Schölkopf B., Burges C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Weston J., Gammerman A., Stitson M.O., Vapnik V., Vovk V., and Watkins C. Support vector density estimation. In: Schölkopf B., Burges C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA 293-306
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
16
-
-
75749103384
-
-
S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report A.I. Memo No. 1653, MIT AI Lab, USA, 1999.
-
S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report A.I. Memo No. 1653, MIT AI Lab, USA, 1999.
-
-
-
-
17
-
-
84898937307
-
Support vector method for multivariate density estimation
-
Solla S., Leen T., and Müller K.R. (Eds), MIT Press, Cambridge, MA
-
Vapnik V., and Mukherjee S. Support vector method for multivariate density estimation. In: Solla S., Leen T., and Müller K.R. (Eds). Advances in Neural Information Processing Systems (2000), MIT Press, Cambridge, MA 659-665
-
(2000)
Advances in Neural Information Processing Systems
, pp. 659-665
-
-
Vapnik, V.1
Mukherjee, S.2
-
18
-
-
56449120109
-
Tailoring density estimation via reproducing kernel moment matching
-
Helsinki, Finland, July 5-9
-
L. Song, X. Zhang, A. Smola, A. Gretton, B. Schöolkopf, Tailoring density estimation via reproducing kernel moment matching, in: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, July 5-9, 2008, pp. 992-999.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 992-999
-
-
Song, L.1
Zhang, X.2
Smola, A.3
Gretton, A.4
Schöolkopf, B.5
-
19
-
-
0142039770
-
Probability density estimation from optimally condensed data samples
-
Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1253-1264
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, pp. 1253-1264
-
-
Girolami, M.1
He, C.2
-
20
-
-
3442875753
-
-
Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, Southampton, UK, August
-
A. Choudhury, Fast machine learning algorithms for large data, Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, Southampton, UK, August 2002.
-
(2002)
Fast machine learning algorithms for large data
-
-
Choudhury, A.1
-
21
-
-
0038548172
-
Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
-
Chen S., Hong X., and Harris C.J. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 (2003) 1029-1036
-
(2003)
IEEE Trans. Autom. Control
, vol.48
, pp. 1029-1036
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
22
-
-
1842430977
-
Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
-
Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 898-911
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B
, vol.34
, pp. 898-911
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
Sharkey, P.M.4
-
23
-
-
3442881906
-
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
-
Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 1708-1717
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B
, vol.34
, pp. 1708-1717
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
24
-
-
38649088632
-
An orthogonal forward regression techniques for sparse kernel density estimation
-
Chen S., Hong X., and Harris C.J. An orthogonal forward regression techniques for sparse kernel density estimation. Neurocomputing 71 (2008) 931-943
-
(2008)
Neurocomputing
, vol.71
, pp. 931-943
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
25
-
-
75749089278
-
-
F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report MS-CIS-02-19, University of Pennsylvania, USA, 2002.
-
F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report MS-CIS-02-19, University of Pennsylvania, USA, 2002.
-
-
-
-
26
-
-
39549091331
-
A forward-constrained regression algorithm for sparse kernel density estimation
-
Hong X., Chen S., and Harris C.J. A forward-constrained regression algorithm for sparse kernel density estimation. IEEE Trans. Neural Networks 19 (2008) 193-1981
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, pp. 193-1981
-
-
Hong, X.1
Chen, S.2
Harris, C.J.3
-
28
-
-
0035502839
-
Neurofuzzy design and model construction of nonlinear dynamical processes from data
-
Hong X., and Harris C.J. Neurofuzzy design and model construction of nonlinear dynamical processes from data. IEE Proc. Control Theory Appl. 148 (2001) 530-538
-
(2001)
IEE Proc. Control Theory Appl.
, vol.148
, pp. 530-538
-
-
Hong, X.1
Harris, C.J.2
-
29
-
-
0035271447
-
Nonlinear model structure detection using optimum design and orthogonal least squares
-
Hong X., and Harris C.J. Nonlinear model structure detection using optimum design and orthogonal least squares. IEEE Trans. Neural Networks 12 (2001) 435-439
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 435-439
-
-
Hong, X.1
Harris, C.J.2
-
30
-
-
0036738761
-
Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
-
Hong X., and Harris C.J. Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Trans. Neural Networks 13 (2002) 1245-1250
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 1245-1250
-
-
Hong, X.1
Harris, C.J.2
-
32
-
-
0000629975
-
Cross validation choice and assessment of statistical predictions
-
Stone M. Cross validation choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36 (1974) 111-147
-
(1974)
J. R. Stat. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
34
-
-
75749085422
-
-
Glivenko-Cantelli theorem. [Online] Available 〈http://en.wikipedia.org/wiki/Glivenko-Cantelli_theorem〉.
-
Glivenko-Cantelli theorem. [Online] Available 〈http://en.wikipedia.org/wiki/Glivenko-Cantelli_theorem〉.
-
-
-
-
35
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Schölkopf B., Platt J.C., Shawe-Taylor J., Smola A.J., and Williamson R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 13 (2001) 1443-1471
-
(2001)
Neural Comput.
, vol.13
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
36
-
-
0029343956
-
Fast orthogonal least squares algorithm for efficient subset model selection
-
Chen S., and Wigger J. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Trans. Signal Process. 43 (1995) 1713-1715
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, pp. 1713-1715
-
-
Chen, S.1
Wigger, J.2
-
38
-
-
75749153009
-
-
Available
-
[Online] Available 〈http://www.stats.ox.ac.uk/PRNN〉.
-
-
-
-
39
-
-
75749118976
-
-
Available
-
[Online] Available 〈http://ida.first.fhg.de/projects/bench/benchmarks.htm〉.
-
-
-
-
41
-
-
27144453355
-
Orthogonal forward selection for constructing the radial basis function network with tunable nodes
-
Hefei, China, August 23-26
-
S. Chen, X. Hong, C.J. Harris, Orthogonal forward selection for constructing the radial basis function network with tunable nodes, in: Proceedings of the 2005 International Conference Intelligent Computing, Hefei, China, August 23-26, 2005, pp. 777-786.
-
(2005)
Proceedings of the 2005 International Conference Intelligent Computing
, pp. 777-786
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
42
-
-
38349164281
-
Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate
-
Vancouver, Canada, July 16-21
-
S. Chen, X. Hong, C.J. Harris, Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate, in: Proceedings of the 2006 International Joint Conference on Neural Networks, Vancouver, Canada, July 16-21, 2006, pp. 6390-6394.
-
(2006)
Proceedings of the 2006 International Joint Conference on Neural Networks
, pp. 6390-6394
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
43
-
-
34248656230
-
Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel mode
-
Wang X.X., Chen S., Lowe D., and Harris C.J. Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel mode. Int. J. Modelling, Identification Control 1 (2006) 245-256
-
(2006)
Int. J. Modelling, Identification Control
, vol.1
, pp. 245-256
-
-
Wang, X.X.1
Chen, S.2
Lowe, D.3
Harris, C.J.4
-
44
-
-
33750333148
-
Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
-
Wang X.X., Chen S., Lowe D., and Harris C.J. Sparse support vector regression based on orthogonal forward selection for the generalised kernel model. Neurocomputing 70 (2006) 462-474
-
(2006)
Neurocomputing
, vol.70
, pp. 462-474
-
-
Wang, X.X.1
Chen, S.2
Lowe, D.3
Harris, C.J.4
-
45
-
-
39549096279
-
A new Jacobian matrix for optimal learning of single-layer neural networks
-
Peng J.-X., Li G., and Irwin G.W. A new Jacobian matrix for optimal learning of single-layer neural networks. IEEE Trans. Neural Networks 19 (2008) 119-129
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, pp. 119-129
-
-
Peng, J.-X.1
Li, G.2
Irwin, G.W.3
-
46
-
-
64049119709
-
Construction of tunable radial basis function networks using orthogonal forward selection
-
Chen S., Hong X., Luk B.L., and Harris C.J. Construction of tunable radial basis function networks using orthogonal forward selection. IEEE Trans. Syst. Man Cybern. Part B 39 (2009) 457-466
-
(2009)
IEEE Trans. Syst. Man Cybern. Part B
, vol.39
, pp. 457-466
-
-
Chen, S.1
Hong, X.2
Luk, B.L.3
Harris, C.J.4
-
47
-
-
63449091970
-
Two-stage mixed discretecontinuous identification of radial basis function (RBF) neural models for nonlinear systems
-
Li K., Peng J.-X., and Bai E.-W. Two-stage mixed discretecontinuous identification of radial basis function (RBF) neural models for nonlinear systems. IEEE Trans. Circuits Syst. Part I 56 (2009) 630-643
-
(2009)
IEEE Trans. Circuits Syst. Part I
, vol.56
, pp. 630-643
-
-
Li, K.1
Peng, J.-X.2
Bai, E.-W.3
|