-
4
-
-
0033345674
-
Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability
-
Nov.
-
H. Wang, "Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability," IEEE Trans. Autom. Control, vol.44, no.11, pp. 2103-2107, Nov. 1999.
-
(1999)
IEEE Trans. Autom. Control
, vol.44
, Issue.11
, pp. 2103-2107
-
-
Wang, H.1
-
5
-
-
0035370004
-
Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels
-
DOI 10.1109/78.923306, PII S1053587X01038843
-
S. Chen, A. K. Samingan, B. Mulgrew, and L. Hanzo, "Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels," IEEE Trans. Signal Process., vol.49, no.6, pp. 1240- 1247, Jun. 2001. (Pubitemid 32512284)
-
(2001)
IEEE Transactions on Signal Processing
, vol.49
, Issue.6
, pp. 1240-1247
-
-
Chen, S.1
Samingan, A.K.2
Mulgrew, B.3
Hanzo, L.4
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N.M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc. B, vol.39, no.1, pp. 1-38, 1977.
-
(1977)
J. R. Stat. Soc. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
8
-
-
0003857778
-
-
Univ. California, Berkeley, Tech. Rep., ICSI-TR-97-1021
-
J. A. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models," Univ. California, Berkeley, Tech. Rep., ICSI-TR-97-1021, 1997.
-
(1997)
A Gentle Tutorial of the em Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models
-
-
Bilmes, J.A.1
-
10
-
-
0032098246
-
Robust maximum likelihood training of heteroscedastic probabilistic neural networks
-
Jun.
-
Z. R. Yang and S. Chen, "Robust maximum likelihood training of heteroscedastic probabilistic neural networks," Neural Netw., vol.11, no.4, pp. 739-747, Jun. 1998.
-
(1998)
Neural Netw.
, vol.11
, Issue.4
, pp. 739-747
-
-
Yang, Z.R.1
Chen, S.2
-
11
-
-
15844362098
-
Robust Bayesian mixture modelling
-
Mar.
-
M. Svensén and C. M. Bishop, "Robust Bayesian mixture modelling," Neurocomputing, vol.64, pp. 235-252, Mar. 2005.
-
(2005)
Neurocomputing
, vol.64
, pp. 235-252
-
-
Svensén, M.1
Bishop, C.M.2
-
12
-
-
33845659662
-
Robust Bayesian clustering
-
Jan.
-
C. Archambeau and M. Verleysen, "Robust Bayesian clustering," Neural Netw., vol.20, no.1, pp. 129-138, Jan. 2007.
-
(2007)
Neural Netw.
, vol.20
, Issue.1
, pp. 129-138
-
-
Archambeau, C.1
Verleysen, M.2
-
13
-
-
0001473437
-
On estimation of a probability density function and mode
-
E. Parzen, "On estimation of a probability density function and mode," Ann. Math. Stat., vol.33, no.3, pp. 1066-1076, 1962.
-
(1962)
Ann. Math. Stat.
, vol.33
, Issue.3
, pp. 1066-1076
-
-
Parzen, E.1
-
14
-
-
0001873884
-
Support vector density estimation
-
B. Schölkopf C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
J. Weston, A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, and C. Watkins, "Support vector density estimation," in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 293-306.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
15
-
-
0040908595
-
Support vector method for multivariate density estimation
-
Cambridge, MA, Tech. Rep., A.I. Memo No.
-
S. Mukherjee and V. Vapnik, "Support vector method for multivariate density estimation," MIT AI Lab, Cambridge, MA, Tech. Rep., A.I. Memo No. 1653, 1999.
-
(1999)
MIT AI Lab
, vol.1653
-
-
Mukherjee, S.1
Vapnik, V.2
-
16
-
-
84898937307
-
Support vector method for multivariate density estimation
-
S. Solla, T. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press
-
V. Vapnik and S. Mukherjee, "Support vector method for multivariate density estimation," in Advances in Neural Information Processing Systems, S. Solla, T. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press, 2000, pp. 659-665.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 659-665
-
-
Vapnik, V.1
Mukherjee, S.2
-
17
-
-
0142039770
-
Probability density estimation from optimally condensed data samples
-
Oct.
-
M. Girolami and C. He, "Probability density estimation from optimally condensed data samples," IEEE Trans. Pattern Anal.Mach. Intell., vol.25, no.10, pp. 1253-1264, Oct. 2003.
-
(2003)
IEEE Trans. Pattern Anal.Mach. Intell.
, vol.25
, Issue.10
, pp. 1253-1264
-
-
Girolami, M.1
He, C.2
-
18
-
-
3442875753
-
Fast machine learning algorithms for large data
-
Ph.D. dissertation, School Eng. Sci., Univ. Southampton, Southampton, U.K.
-
A. Choudhury, "Fast machine learning algorithms for large data," Ph.D. dissertation, Comput. Eng. Design Center, School Eng. Sci., Univ. Southampton, Southampton, U.K., 2002.
-
(2002)
Comput. Eng. Design Center
-
-
Choudhury, A.1
-
19
-
-
3442881906
-
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
-
Aug.
-
S. Chen, X. Hong, and C. J. Harris, "Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization," IEEE Trans. Syst.,Man, Cybern. B, Cybern., vol.34, no.4, pp. 1708-1717, Aug. 2004.
-
(2004)
IEEE Trans. Syst.,Man, Cybern. B, Cybern.
, vol.34
, Issue.4
, pp. 1708-1717
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
20
-
-
38649088632
-
An orthogonal forward regression technique for sparse kernel density estimation
-
DOI 10.1016/j.neucom.2007.02.008, PII S0925231207000811
-
S. Chen, X. Hong, and C. J. Harris, "An orthogonal forward regression techniques for sparse kernel density estimation," Neurocomputing, vol.71, no.4-6, pp. 931-943, Jan. 2008. (Pubitemid 351168423)
-
(2008)
Neurocomputing
, vol.71
, Issue.4-6
, pp. 931-943
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
21
-
-
0142130763
-
-
Univ. Pennsylvania, Philadelphia, PA, Tech. Rep. MS-CIS-02-19
-
F. Sha, L. K. Saul, and D. D. Lee, "Multiplicative updates for nonnegative quadratic programming in support vector machines," Univ. Pennsylvania, Philadelphia, PA, Tech. Rep. MS-CIS-02-19, 2002.
-
(2002)
Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines
-
-
Sha, F.1
Saul, L.K.2
Lee, D.D.3
-
24
-
-
43949164756
-
Simulated annealing: Practice versus theory
-
L. Ingber, "Simulated annealing: Practice versus theory," Math. Comput. Model., vol.18, no.11, pp. 29-57, 1993.
-
(1993)
Math. Comput. Model.
, vol.18
, Issue.11
, pp. 29-57
-
-
Ingber, L.1
-
25
-
-
0033316827
-
Adaptive simulated annealing for optimization in signal processing applications
-
Nov.
-
S. Chen and B. L. Luk, "Adaptive simulated annealing for optimization in signal processing applications," Signal Process., vol.79, no.1, pp. 117- 128, Nov. 1999.
-
(1999)
Signal Process.
, vol.79
, Issue.1
, pp. 117-128
-
-
Chen, S.1
Luk, B.L.2
-
26
-
-
0029535737
-
Particle swarm optimization
-
Piscataway, NJ, Nov. 27-Dec. 1
-
J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Conf. Neural Netw., Piscataway, NJ, Nov. 27-Dec. 1, 1995, vol.4, pp. 1942-1948.
-
(1995)
Proc. IEEE Int. Conf. Neural Netw.
, vol.4
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.C.2
-
28
-
-
24644475780
-
Experiments with repeating weighted boosting search for optimization in signal processing applications
-
Aug.
-
S. Chen, X. X. Wang, and C. J. Harris, "Experiments with repeating weighted boosting search for optimization in signal processing applications," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.35, no.4, pp. 682-693, Aug. 2005.
-
(2005)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.35
, Issue.4
, pp. 682-693
-
-
Chen, S.1
Wang, X.X.2
Harris, C.J.3
-
29
-
-
0037861058
-
Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
-
May
-
X. Hong, P. M. Sharkey, and K.Warwick, "Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic," Proc. Inst. Elect. Eng.-Control Theory Appl., vol.150, no.3, pp. 245-254, May 2003.
-
(2003)
Proc. Inst. Elect. Eng.-Control Theory Appl.
, vol.150
, Issue.3
, pp. 245-254
-
-
Hong, X.1
Sharkey, P.M.2
Warwick, K.3
-
30
-
-
1842430977
-
Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
-
Apr.
-
S. Chen, X. Hong, C. J. Harris, and P.M. Sharkey, "Sparse modeling using orthogonal forward regression with PRESS statistic and regularization," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.34, no.2, pp. 898-911, Apr. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.34
, Issue.2
, pp. 898-911
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
Sharkey, P.M.4
-
31
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Jul.
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Comput., vol.13, no.7, pp. 1443-1471, Jul. 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
32
-
-
77954760843
-
-
[Online]. Available:
-
[Online]. Available: http://en.wikipedia.org/wiki/Glivenko-Cantelli- theorem
-
-
-
-
34
-
-
0000629975
-
Cross validation choice and assessment of statistical predictions
-
M. Stone, "Cross validation choice and assessment of statistical predictions," J. R. Stat. Soc. B, vol.36, pp. 111-147, 1974.
-
(1974)
J. R. Stat. Soc. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
35
-
-
21344466221
-
Linear unlearning for cross-validation
-
Dec.
-
L. K. Hansen and J. Larsen, "Linear unlearning for cross-validation," Adv. Comput. Math., vol.5, no.1, pp. 269-280, Dec. 1996.
-
(1996)
Adv. Comput. Math.
, vol.5
, Issue.1
, pp. 269-280
-
-
Hansen, L.K.1
Larsen, J.2
-
36
-
-
0013370796
-
Local overfitting control via leverages
-
Jun.
-
G. Monari and G. Dreyfus, "Local overfitting control via leverages," Neural Comput., vol.14, no.6, pp. 1481-1506, Jun. 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.6
, pp. 1481-1506
-
-
Monari, G.1
Dreyfus, G.2
-
37
-
-
0029343956
-
Fast orthogonal least squares algorithm for efficient subset model selection
-
Jul.
-
S. Chen and J. Wigger, "Fast orthogonal least squares algorithm for efficient subset model selection," IEEE Trans. Signal Process., vol.43, no.7, pp. 1713-1715, Jul. 1995.
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, Issue.7
, pp. 1713-1715
-
-
Chen, S.1
Wigger, J.2
-
38
-
-
0024771664
-
Orthogonal least squares methods and their applications to non-linear system identification
-
Nov.
-
S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to non-linear system identification," Int. J. Control, vol.50, no.5, pp. 1873-1896, Nov. 1989.
-
(1989)
Int. J. Control
, vol.50
, Issue.5
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.A.2
Luo, W.3
-
39
-
-
0025448521
-
The strength of weak learnability
-
Jun.
-
R. E. Schapire, "The strength of weak learnability," Mach. Learn., vol.5, no.2, pp. 197-227, Jun. 1990.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
40
-
-
0031211090
-
A decision-theoretic generalization of online learning and an application to boosting
-
Aug.
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," J. Comput. Syst. Sci., vol.55, no.1, pp. 119-139, Aug. 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
41
-
-
0000275022
-
Prediction games and arcing algorithms
-
Oct.
-
L. Breiman, "Prediction games and arcing algorithms," Neural Comput., vol.11, no.7, pp. 1493-1518, Oct. 1999.
-
(1999)
Neural Comput.
, vol.11
, Issue.7
, pp. 1493-1518
-
-
Breiman, L.1
-
42
-
-
1542276975
-
An introduction to boosting and leveraging
-
S. Mendelson and A. Smola, Eds. New York: Springer-Verlag
-
R. Meir and G. Rätsch, "An introduction to boosting and leveraging," in Advanced Lectures in Machine Learning, S. Mendelson and A. Smola, Eds. New York: Springer-Verlag, 2003, pp. 119-184.
-
(2003)
Advanced Lectures in Machine Learning
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
43
-
-
0001573928
-
Stochastic techniques for global optimization: A survey of recent advances
-
Sep.
-
F. Schoen, "Stochastic techniques for global optimization: A survey of recent advances," J. Global Optim., vol.1, no.3, pp. 207-228, Sep. 1991.
-
(1991)
J. Global Optim.
, vol.1
, Issue.3
, pp. 207-228
-
-
Schoen, F.1
|