메뉴 건너뛰기




Volumn 40, Issue 4, 2010, Pages 1101-1114

Probability density estimation with tunable kernels using orthogonal forward regression

Author keywords

Leave one out (LOO) cross validation; multiplicative nonnegative quadratic programming (MNQP); orthogonal forward regression (OFR); Parzen window (PW) estimate; probability density function (pdf); sparse kernel density (KD) estimate; tunable kernels

Indexed keywords

CROSS VALIDATION; FORWARD REGRESSION; LEAVE-ONE-OUT; MULTIPLICATIVE NONNEGATIVE QUADRATIC PROGRAMMING (MNQP); PARZEN WINDOWS; PROBABILITY DENSITY FUNCTION (PDF); SPARSE KERNELS;

EID: 77954759393     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2009.2034732     Document Type: Article
Times cited : (16)

References (43)
  • 4
    • 0033345674 scopus 로고    scopus 로고
    • Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability
    • Nov.
    • H. Wang, "Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability," IEEE Trans. Autom. Control, vol.44, no.11, pp. 2103-2107, Nov. 1999.
    • (1999) IEEE Trans. Autom. Control , vol.44 , Issue.11 , pp. 2103-2107
    • Wang, H.1
  • 5
    • 0035370004 scopus 로고    scopus 로고
    • Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels
    • DOI 10.1109/78.923306, PII S1053587X01038843
    • S. Chen, A. K. Samingan, B. Mulgrew, and L. Hanzo, "Adaptive minimum-BER linear multiuser detection for DS-CDMA signals in multipath channels," IEEE Trans. Signal Process., vol.49, no.6, pp. 1240- 1247, Jun. 2001. (Pubitemid 32512284)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.6 , pp. 1240-1247
    • Chen, S.1    Samingan, A.K.2    Mulgrew, B.3    Hanzo, L.4
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N.M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc. B, vol.39, no.1, pp. 1-38, 1977.
    • (1977) J. R. Stat. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 0032098246 scopus 로고    scopus 로고
    • Robust maximum likelihood training of heteroscedastic probabilistic neural networks
    • Jun.
    • Z. R. Yang and S. Chen, "Robust maximum likelihood training of heteroscedastic probabilistic neural networks," Neural Netw., vol.11, no.4, pp. 739-747, Jun. 1998.
    • (1998) Neural Netw. , vol.11 , Issue.4 , pp. 739-747
    • Yang, Z.R.1    Chen, S.2
  • 11
    • 15844362098 scopus 로고    scopus 로고
    • Robust Bayesian mixture modelling
    • Mar.
    • M. Svensén and C. M. Bishop, "Robust Bayesian mixture modelling," Neurocomputing, vol.64, pp. 235-252, Mar. 2005.
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svensén, M.1    Bishop, C.M.2
  • 12
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian clustering
    • Jan.
    • C. Archambeau and M. Verleysen, "Robust Bayesian clustering," Neural Netw., vol.20, no.1, pp. 129-138, Jan. 2007.
    • (2007) Neural Netw. , vol.20 , Issue.1 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 13
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen, "On estimation of a probability density function and mode," Ann. Math. Stat., vol.33, no.3, pp. 1066-1076, 1962.
    • (1962) Ann. Math. Stat. , vol.33 , Issue.3 , pp. 1066-1076
    • Parzen, E.1
  • 15
    • 0040908595 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • Cambridge, MA, Tech. Rep., A.I. Memo No.
    • S. Mukherjee and V. Vapnik, "Support vector method for multivariate density estimation," MIT AI Lab, Cambridge, MA, Tech. Rep., A.I. Memo No. 1653, 1999.
    • (1999) MIT AI Lab , vol.1653
    • Mukherjee, S.1    Vapnik, V.2
  • 16
    • 84898937307 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • S. Solla, T. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press
    • V. Vapnik and S. Mukherjee, "Support vector method for multivariate density estimation," in Advances in Neural Information Processing Systems, S. Solla, T. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press, 2000, pp. 659-665.
    • (2000) Advances in Neural Information Processing Systems , pp. 659-665
    • Vapnik, V.1    Mukherjee, S.2
  • 17
    • 0142039770 scopus 로고    scopus 로고
    • Probability density estimation from optimally condensed data samples
    • Oct.
    • M. Girolami and C. He, "Probability density estimation from optimally condensed data samples," IEEE Trans. Pattern Anal.Mach. Intell., vol.25, no.10, pp. 1253-1264, Oct. 2003.
    • (2003) IEEE Trans. Pattern Anal.Mach. Intell. , vol.25 , Issue.10 , pp. 1253-1264
    • Girolami, M.1    He, C.2
  • 18
    • 3442875753 scopus 로고    scopus 로고
    • Fast machine learning algorithms for large data
    • Ph.D. dissertation, School Eng. Sci., Univ. Southampton, Southampton, U.K.
    • A. Choudhury, "Fast machine learning algorithms for large data," Ph.D. dissertation, Comput. Eng. Design Center, School Eng. Sci., Univ. Southampton, Southampton, U.K., 2002.
    • (2002) Comput. Eng. Design Center
    • Choudhury, A.1
  • 19
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Aug.
    • S. Chen, X. Hong, and C. J. Harris, "Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization," IEEE Trans. Syst.,Man, Cybern. B, Cybern., vol.34, no.4, pp. 1708-1717, Aug. 2004.
    • (2004) IEEE Trans. Syst.,Man, Cybern. B, Cybern. , vol.34 , Issue.4 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 20
    • 38649088632 scopus 로고    scopus 로고
    • An orthogonal forward regression technique for sparse kernel density estimation
    • DOI 10.1016/j.neucom.2007.02.008, PII S0925231207000811
    • S. Chen, X. Hong, and C. J. Harris, "An orthogonal forward regression techniques for sparse kernel density estimation," Neurocomputing, vol.71, no.4-6, pp. 931-943, Jan. 2008. (Pubitemid 351168423)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 931-943
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 24
    • 43949164756 scopus 로고
    • Simulated annealing: Practice versus theory
    • L. Ingber, "Simulated annealing: Practice versus theory," Math. Comput. Model., vol.18, no.11, pp. 29-57, 1993.
    • (1993) Math. Comput. Model. , vol.18 , Issue.11 , pp. 29-57
    • Ingber, L.1
  • 25
    • 0033316827 scopus 로고    scopus 로고
    • Adaptive simulated annealing for optimization in signal processing applications
    • Nov.
    • S. Chen and B. L. Luk, "Adaptive simulated annealing for optimization in signal processing applications," Signal Process., vol.79, no.1, pp. 117- 128, Nov. 1999.
    • (1999) Signal Process. , vol.79 , Issue.1 , pp. 117-128
    • Chen, S.1    Luk, B.L.2
  • 26
    • 0029535737 scopus 로고
    • Particle swarm optimization
    • Piscataway, NJ, Nov. 27-Dec. 1
    • J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Conf. Neural Netw., Piscataway, NJ, Nov. 27-Dec. 1, 1995, vol.4, pp. 1942-1948.
    • (1995) Proc. IEEE Int. Conf. Neural Netw. , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.C.2
  • 28
    • 24644475780 scopus 로고    scopus 로고
    • Experiments with repeating weighted boosting search for optimization in signal processing applications
    • Aug.
    • S. Chen, X. X. Wang, and C. J. Harris, "Experiments with repeating weighted boosting search for optimization in signal processing applications," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.35, no.4, pp. 682-693, Aug. 2005.
    • (2005) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.35 , Issue.4 , pp. 682-693
    • Chen, S.1    Wang, X.X.2    Harris, C.J.3
  • 29
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
    • May
    • X. Hong, P. M. Sharkey, and K.Warwick, "Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic," Proc. Inst. Elect. Eng.-Control Theory Appl., vol.150, no.3, pp. 245-254, May 2003.
    • (2003) Proc. Inst. Elect. Eng.-Control Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 30
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Apr.
    • S. Chen, X. Hong, C. J. Harris, and P.M. Sharkey, "Sparse modeling using orthogonal forward regression with PRESS statistic and regularization," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.34, no.2, pp. 898-911, Apr. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 32
    • 77954760843 scopus 로고    scopus 로고
    • [Online]. Available:
    • [Online]. Available: http://en.wikipedia.org/wiki/Glivenko-Cantelli- theorem
  • 34
    • 0000629975 scopus 로고
    • Cross validation choice and assessment of statistical predictions
    • M. Stone, "Cross validation choice and assessment of statistical predictions," J. R. Stat. Soc. B, vol.36, pp. 111-147, 1974.
    • (1974) J. R. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 35
    • 21344466221 scopus 로고    scopus 로고
    • Linear unlearning for cross-validation
    • Dec.
    • L. K. Hansen and J. Larsen, "Linear unlearning for cross-validation," Adv. Comput. Math., vol.5, no.1, pp. 269-280, Dec. 1996.
    • (1996) Adv. Comput. Math. , vol.5 , Issue.1 , pp. 269-280
    • Hansen, L.K.1    Larsen, J.2
  • 36
    • 0013370796 scopus 로고    scopus 로고
    • Local overfitting control via leverages
    • Jun.
    • G. Monari and G. Dreyfus, "Local overfitting control via leverages," Neural Comput., vol.14, no.6, pp. 1481-1506, Jun. 2002.
    • (2002) Neural Comput. , vol.14 , Issue.6 , pp. 1481-1506
    • Monari, G.1    Dreyfus, G.2
  • 37
    • 0029343956 scopus 로고
    • Fast orthogonal least squares algorithm for efficient subset model selection
    • Jul.
    • S. Chen and J. Wigger, "Fast orthogonal least squares algorithm for efficient subset model selection," IEEE Trans. Signal Process., vol.43, no.7, pp. 1713-1715, Jul. 1995.
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.7 , pp. 1713-1715
    • Chen, S.1    Wigger, J.2
  • 38
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their applications to non-linear system identification
    • Nov.
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to non-linear system identification," Int. J. Control, vol.50, no.5, pp. 1873-1896, Nov. 1989.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 39
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Jun.
    • R. E. Schapire, "The strength of weak learnability," Mach. Learn., vol.5, no.2, pp. 197-227, Jun. 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 40
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Aug.
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," J. Comput. Syst. Sci., vol.55, no.1, pp. 119-139, Aug. 1997.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 41
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Oct.
    • L. Breiman, "Prediction games and arcing algorithms," Neural Comput., vol.11, no.7, pp. 1493-1518, Oct. 1999.
    • (1999) Neural Comput. , vol.11 , Issue.7 , pp. 1493-1518
    • Breiman, L.1
  • 42
    • 1542276975 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. Smola, Eds. New York: Springer-Verlag
    • R. Meir and G. Rätsch, "An introduction to boosting and leveraging," in Advanced Lectures in Machine Learning, S. Mendelson and A. Smola, Eds. New York: Springer-Verlag, 2003, pp. 119-184.
    • (2003) Advanced Lectures in Machine Learning , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 43
    • 0001573928 scopus 로고
    • Stochastic techniques for global optimization: A survey of recent advances
    • Sep.
    • F. Schoen, "Stochastic techniques for global optimization: A survey of recent advances," J. Global Optim., vol.1, no.3, pp. 207-228, Sep. 1991.
    • (1991) J. Global Optim. , vol.1 , Issue.3 , pp. 207-228
    • Schoen, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.