메뉴 건너뛰기




Volumn 56, Issue 3, 2009, Pages 630-643

Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems

Author keywords

Computational complexity analysis; Continuous parameter optimization; Nonlinear system identification; Radial basis function (RBF) neural modeling; Structure determination; Subset selection

Indexed keywords

CALCULATIONS; COMPUTATIONAL COMPLEXITY; FUNCTIONS; ITERATIVE METHODS; NONLINEAR DYNAMICAL SYSTEMS; NONLINEAR SYSTEMS;

EID: 63449091970     PISSN: 10577122     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSI.2008.2002545     Document Type: Article
Times cited : (35)

References (59)
  • 1
    • 33750480558 scopus 로고    scopus 로고
    • Robust stability and robust periodicity of delayed recurrent neural networks with noise disturbance
    • Oct
    • C. Li and X. Liao, "Robust stability and robust periodicity of delayed recurrent neural networks with noise disturbance," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 10, pp. 2265-2273, Oct. 2006.
    • (2006) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.53 , Issue.10 , pp. 2265-2273
    • Li, C.1    Liao, X.2
  • 2
    • 36348956891 scopus 로고    scopus 로고
    • An analog programmable multidimensional radial basis function based classifier
    • Oct
    • S.-Y. Peng, P. Hasler, and D. Anderson, "An analog programmable multidimensional radial basis function based classifier," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 10, pp. 2148-2158, Oct. 2007.
    • (2007) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.54 , Issue.10 , pp. 2148-2158
    • Peng, S.-Y.1    Hasler, P.2    Anderson, D.3
  • 3
    • 34248649103 scopus 로고    scopus 로고
    • Least-squares design of FIR filters based on a compacted feedback neural network
    • May
    • Y.-D. Jou and F.-K. Chen, "Least-squares design of FIR filters based on a compacted feedback neural network," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 5, pp. 427-431, May 2007.
    • (2007) IEEE Trans. Circuits Syst. II, Exp. Briefs , vol.54 , Issue.5 , pp. 427-431
    • Jou, Y.-D.1    Chen, F.-K.2
  • 4
    • 33947583893 scopus 로고    scopus 로고
    • Stability analysis of nonlinear system identification via delayed neural networks
    • Feb
    • J. de Jesus Rubio and W. Yu, "Stability analysis of nonlinear system identification via delayed neural networks," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 2, pp. 161-165, Feb. 2007.
    • (2007) IEEE Trans. Circuits Syst. II, Exp. Briefs , vol.54 , Issue.2 , pp. 161-165
    • de Jesus Rubio, J.1    Yu, W.2
  • 6
    • 0032138886 scopus 로고    scopus 로고
    • An approach to information propagation in 1-dimensional cellular neural networks - Part I: Local diffusion
    • Jun
    • P. Thiran, G. Setti, and M. Hasler, "An approach to information propagation in 1-dimensional cellular neural networks - Part I: Local diffusion," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 8, pp. 777-789, Jun. 1998.
    • (1998) IEEE Trans. Circuits Syst. I, Fundam. Theory Appl , vol.45 , Issue.8 , pp. 777-789
    • Thiran, P.1    Setti, G.2    Hasler, M.3
  • 7
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park and I. Sandberg, "Universal approximation using radial-basis-function networks," Neural Comput., vol. 3, no. 2, pp. 246-257, 1991.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.2
  • 8
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modeling and identification
    • S. Chen and S. A. Billings, "Neural networks for nonlinear dynamic system modeling and identification," Int. J. Control, vol. 56, no. 2, pp. 319-346, 1992.
    • (1992) Int. J. Control , vol.56 , Issue.2 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 9
    • 0030192825 scopus 로고    scopus 로고
    • Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    • Jul
    • Q. M. Zhu and S. A. Billings, "Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks," Int. J. Control, vol. 64, no. 5, pp. 871-886, Jul. 1996.
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 871-886
    • Zhu, Q.M.1    Billings, S.A.2
  • 12
    • 0036466752 scopus 로고    scopus 로고
    • Adaptive motion control using neural network approximations
    • Feb
    • S. N. Huang, K. K. Tan, and T. H. Lee, "Adaptive motion control using neural network approximations," Automatica, vol. 38, no. 2, pp. 227-233, Feb. 2002.
    • (2002) Automatica , vol.38 , Issue.2 , pp. 227-233
    • Huang, S.N.1    Tan, K.K.2    Lee, T.H.3
  • 14
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Jan
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57-67, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 15
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 16
    • 21244456913 scopus 로고    scopus 로고
    • Extreme learning machine: RBF network case
    • Kunming, China, Dec. 6-9
    • G.-B. Huang and C.-K. Siew, "Extreme learning machine: RBF network case," in Proc. 8th ICARCV, Kunming, China, Dec. 6-9, 2004, vol. 2, pp. 1029-1036.
    • (2004) Proc. 8th ICARCV , vol.2 , pp. 1029-1036
    • Huang, G.-B.1    Siew, C.-K.2
  • 17
    • 2542619881 scopus 로고    scopus 로고
    • Robust and adaptive back-stepping control for nonlinear systems using RBF neural networks
    • May
    • Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, "Robust and adaptive back-stepping control for nonlinear systems using RBF neural networks," IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 693-701, May 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.3 , pp. 693-701
    • Li, Y.1    Qiang, S.2    Zhuang, X.3    Kaynak, O.4
  • 18
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • K. Li, J. Peng, and E. W. Bai, "A two-stage algorithm for identification of nonlinear dynamic systems," Automatica, vol. 42, no. 7, pp. 1189-1197, 2006.
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Peng, J.2    Bai, E.W.3
  • 19
    • 37249029174 scopus 로고    scopus 로고
    • A hybrid forward algorithm for RBF neural network construction
    • Nov
    • J. Peng, K. Li, and D. S. Huang, "A hybrid forward algorithm for RBF neural network construction," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1439-1451, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1439-1451
    • Peng, J.1    Li, K.2    Huang, D.S.3
  • 21
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Nov
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their application to non-linear system identification," Int. J. Control, vol. 50, no. 5, pp. 1873-1896, Nov. 1989.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 22
    • 34248656230 scopus 로고    scopus 로고
    • Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel model
    • X. Wang, S. Chen, D. Lowe, and C. Harris, "Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel model," Int. J. Model. Identification Control, vol. 1, no. 4, pp. 245-256, 2006.
    • (2006) Int. J. Model. Identification Control , vol.1 , Issue.4 , pp. 245-256
    • Wang, X.1    Chen, S.2    Lowe, D.3    Harris, C.4
  • 23
    • 33750333148 scopus 로고    scopus 로고
    • Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
    • Dec
    • X. Wang, S. Chen, D. Lowe, and C. Harris, "Sparse support vector regression based on orthogonal forward selection for the generalised kernel model," Neurocomputing, vol. 70, no. 1-3, pp. 462-474, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 462-474
    • Wang, X.1    Chen, S.2    Lowe, D.3    Harris, C.4
  • 24
    • 38349164281 scopus 로고    scopus 로고
    • Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate
    • Vancouver, Canada, Jul. 16-21
    • S. Chen, X. Wang, and C. Harris, "Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate," in Proc. Int. Joint Conf. Neural Netw., Vancouver, Canada, Jul. 16-21, 2006, pp. 6390-6394.
    • (2006) Proc. Int. Joint Conf. Neural Netw , pp. 6390-6394
    • Chen, S.1    Wang, X.2    Harris, C.3
  • 25
    • 37749055110 scopus 로고    scopus 로고
    • NARX-based nonlinear system identification using orthogonal least squares basis hunting
    • Jan
    • S. Chen, X. Wang, and C. Harris, "NARX-based nonlinear system identification using orthogonal least squares basis hunting," IEEE Trans. Control Syst. Technol., vol. 16, no. 1, pp. 78-84, Jan. 2008.
    • (2008) IEEE Trans. Control Syst. Technol , vol.16 , Issue.1 , pp. 78-84
    • Chen, S.1    Wang, X.2    Harris, C.3
  • 26
    • 84943230540 scopus 로고
    • Combination of radial basis function neural networks with optimized learning vector quantization
    • M. Vogt, "Combination of radial basis function neural networks with optimized learning vector quantization," in Proc. IEEE Int. Conf. Neural Netw., 1993, vol. 83, pp. 1841-1846.
    • (1993) Proc. IEEE Int. Conf. Neural Netw , vol.83 , pp. 1841-1846
    • Vogt, M.1
  • 27
    • 0031207070 scopus 로고    scopus 로고
    • Mean-tracking clustering algorithm for radial basis function center selection
    • Aug
    • E. L. Sutanto, J. D. Mason, and K. Warwick, "Mean-tracking clustering algorithm for radial basis function center selection," Int. J. Control, vol. 67, no. 6, pp. 961-977, Aug. 1997.
    • (1997) Int. J. Control , vol.67 , Issue.6 , pp. 961-977
    • Sutanto, E.L.1    Mason, J.D.2    Warwick, K.3
  • 28
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Jun
    • D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," SIAM J. Appl. Math., vol. 11, no. 2, pp. 431-441, Jun. 1963.
    • (1963) SIAM J. Appl. Math , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.1
  • 29
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • May
    • N. B. Karayiannis, "Reformulated radial basis neural networks trained by gradient descent," IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 657-671, May 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 30
    • 0032123629 scopus 로고    scopus 로고
    • A hybrid linear/nonlinear training algorithm for feedforward neural networks
    • Jul
    • S. McLoone, M. D. Brown, G. W. Irwin, and G. Lightbody, "A hybrid linear/nonlinear training algorithm for feedforward neural networks," IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 669-684, Jul. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.4 , pp. 669-684
    • McLoone, S.1    Brown, M.D.2    Irwin, G.W.3    Lightbody, G.4
  • 33
    • 0036738759 scopus 로고    scopus 로고
    • Two highly efficient second-order algorithms for training feedforward networks
    • Sep
    • N. Ampazis and S. J. Perantonis, "Two highly efficient second-order algorithms for training feedforward networks," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1064-1074, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1064-1074
    • Ampazis, N.1    Perantonis, S.J.2
  • 34
    • 0016355478 scopus 로고
    • New look at the statistical model identification
    • Dec
    • H. Akaike, "New look at the statistical model identification," IEEE Trans. Autom. Control, vol. AC-19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Autom. Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 35
    • 0029393539 scopus 로고
    • Twenty-one ML estimators for model selection
    • Oct
    • F. Gustafsson and H. Hjalmarsson, "Twenty-one ML estimators for model selection," Automatica, vol. 31, no. 10, pp. 1377-1392, Oct. 1995.
    • (1995) Automatica , vol.31 , Issue.10 , pp. 1377-1392
    • Gustafsson, F.1    Hjalmarsson, H.2
  • 36
    • 0031224757 scopus 로고    scopus 로고
    • Algorithms for minimal model structure detection in nonlinear dynamic system identification
    • Sep
    • K. Z. Mao and S. A. Billings, "Algorithms for minimal model structure detection in nonlinear dynamic system identification," Int. J. Control, vol. 68, no. 2, pp. 311-330, Sep. 1997.
    • (1997) Int. J. Control , vol.68 , Issue.2 , pp. 311-330
    • Mao, K.Z.1    Billings, S.A.2
  • 37
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks
    • Jul
    • T. P. Chen and H. Chen, "Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks," IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 904-910, Jul. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.4 , pp. 904-910
    • Chen, T.P.1    Chen, H.2
  • 38
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • Aug
    • K. Li, J. Peng, and G. W. Irwin, "A fast nonlinear model identification method," IEEE Trans. Autom. Control, vol. 50, no. 8, pp. 1211-1216, Aug. 2005.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.2    Irwin, G.W.3
  • 39
    • 33751560009 scopus 로고
    • Regularization on the selection of radial basis function centers
    • May
    • M. J. L. Orr, "Regularization on the selection of radial basis function centers," Neural Comput., vol. 7, no. 3, pp. 606-623, May 1995.
    • (1995) Neural Comput , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.J.L.1
  • 40
    • 0031222638 scopus 로고    scopus 로고
    • Givens rotation based fast backward elimination algorithm for RBF neural network pruning
    • Sep
    • X. Hong and S. Billings, "Givens rotation based fast backward elimination algorithm for RBF neural network pruning," Proc. Inst. Elect. Eng. - Control Theory Appl., vol. 144, no. 5, pp. 381-384, Sep. 1997.
    • (1997) Proc. Inst. Elect. Eng. - Control Theory Appl , vol.144 , Issue.5 , pp. 381-384
    • Hong, X.1    Billings, S.2
  • 41
    • 33847065687 scopus 로고    scopus 로고
    • Backward elimination methods for associative memory network pruning
    • Apr
    • X. Hong, C. Harris, M. Brown, and S. Chen, "Backward elimination methods for associative memory network pruning," Int. J. Hybrid Intell. Syst., vol. 1, no. 1/2, pp. 90-99, Apr. 2004.
    • (2004) Int. J. Hybrid Intell. Syst , vol.1 , Issue.1-2 , pp. 90-99
    • Hong, X.1    Harris, C.2    Brown, M.3    Chen, S.4
  • 42
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centers with recursive orthogonal least squares training
    • Mar
    • J. B. Gomm and D. L. Yu, "Selecting radial basis function network centers with recursive orthogonal least squares training," IEEE Trans. Neural Netw., vol. 11, no. 2, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2
    • Gomm, J.B.1    Yu, D.L.2
  • 43
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks
    • Jan
    • A. Sherstinsky and R. W. Picard, "On the efficiency of the orthogonal least squares training method for radial basis function networks," IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 195-200, Jan. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.1 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2
  • 44
    • 0034266879 scopus 로고    scopus 로고
    • Iterative fast orthogonal search algorithm for mdl-based training of generalized single-layer network
    • Sep
    • K. M. Adeney and M. J. Korenberg, "Iterative fast orthogonal search algorithm for mdl-based training of generalized single-layer network," Neural Netw., vol. 13, no. 7, pp. 787-799, Sep. 2000.
    • (2000) Neural Netw , vol.13 , Issue.7 , pp. 787-799
    • Adeney, K.M.1    Korenberg, M.J.2
  • 45
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • Nov
    • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, and A. F. Diaz, "Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation," IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1478-1495, Nov. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.J.5    Diaz, A.F.6
  • 46
    • 33645127005 scopus 로고    scopus 로고
    • System oriented neural networks - Problem formulation, methodology and application
    • K. Li and J.-X. Peng, "System oriented neural networks - Problem formulation, methodology and application," Int. J. Pattern Recognit. Artif. Intell., vol. 20, no. 2, pp. 143-158, 2006.
    • (2006) Int. J. Pattern Recognit. Artif. Intell , vol.20 , Issue.2 , pp. 143-158
    • Li, K.1    Peng, J.-X.2
  • 47
    • 79960736856 scopus 로고    scopus 로고
    • A novel GA-based neural modeling platform for nonlinear dynamic systems
    • Prague, Czech Republic, Jul
    • J. Peng and K. Li, "A novel GA-based neural modeling platform for nonlinear dynamic systems," in Proc. IFAC World Congr. Autom. Control, Prague, Czech Republic, Jul. 2005.
    • (2005) Proc. IFAC World Congr. Autom. Control
    • Peng, J.1    Li, K.2
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sep
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn. vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 50
    • 34047118751 scopus 로고    scopus 로고
    • Comments on Pruning error minimization in least squares support vector machines
    • Mar
    • A. Kuh and P. D. Wilde, "Comments on "Pruning error minimization in least squares support vector machines"," IEEE Trans. Neural Netw. vol. 18, no. 2, pp. 606-609, Mar. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.2 , pp. 606-609
    • Kuh, A.1    Wilde, P.D.2
  • 51
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Feb
    • K. Mao, "Feature subset selection for support vector machines through discriminative function pruning analysis," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 60-67, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.1 , pp. 60-67
    • Mao, K.1
  • 53
    • 79961020016 scopus 로고    scopus 로고
    • Improved training of an optimal sparse least squares support vector machine
    • Seoul, Korea
    • X.-L. Xia, K. Li, and G. W. Irwin, "Improved training of an optimal sparse least squares support vector machine," in Proc. IFAC World Congr., Seoul, Korea, 2008.
    • (2008) Proc. IFAC World Congr
    • Xia, X.-L.1    Li, K.2    Irwin, G.W.3
  • 54
    • 0025669403 scopus 로고
    • Practical identification of NARMAX models using radial basis functions
    • Dec
    • S. Chen, S. A. Billings, C. F. N. Cowan, and P. M. Grant, "Practical identification of NARMAX models using radial basis functions," Int. J. Control, vol. 52, no. 6, pp. 1327-1350, Dec. 1990.
    • (1990) Int. J. Control , vol.52 , Issue.6 , pp. 1327-1350
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 55
    • 14644446005 scopus 로고    scopus 로고
    • Sparse incremental regression modeling using correlation criterion with boosting search
    • Mar
    • S. Chen, X. Wang, and D. Brown, "Sparse incremental regression modeling using correlation criterion with boosting search," IEEE Signal Process. Lett., vol. 12, no. 3, pp. 198-201, Mar. 2005.
    • (2005) IEEE Signal Process. Lett , vol.12 , Issue.3 , pp. 198-201
    • Chen, S.1    Wang, X.2    Brown, D.3
  • 56
    • 0035311654 scopus 로고    scopus 로고
    • On the modeling of nonlinear dynamic systems using support vector neural networks
    • W. C. Chan, C. Chan, K. Cheung, and C. Harris, "On the modeling of nonlinear dynamic systems using support vector neural networks," Eng. Appl. Artif. Intell., vol. 14, pp. 105-113, 2001.
    • (2001) Eng. Appl. Artif. Intell , vol.14 , pp. 105-113
    • Chan, W.C.1    Chan, C.2    Cheung, K.3    Harris, C.4
  • 58
    • 0030462726 scopus 로고    scopus 로고
    • Radial basis function network configuration using mutual information and the orthogonal least squares algorithm
    • Dec
    • G. L. Zhang and S. A. Billings, "Radial basis function network configuration using mutual information and the orthogonal least squares algorithm," Neural Netw., vol. 9, no. 9, pp. 1619-1637, Dec. 1996.
    • (1996) Neural Netw , vol.9 , Issue.9 , pp. 1619-1637
    • Zhang, G.L.1    Billings, S.A.2
  • 59
    • 2342644856 scopus 로고    scopus 로고
    • x emission in a coal-fired power generation plant
    • Jun
    • x emission in a coal-fired power generation plant," Control Eng. Pract., vol. 12, no. 6, pp. 707-723, Jun. 2004.
    • (2004) Control Eng. Pract , vol.12 , Issue.6 , pp. 707-723
    • Li, K.1    Thompson, S.2    Peng, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.