메뉴 건너뛰기




Volumn 4, Issue 3, 2009, Pages

Factors influencing the statistical power of complex data analysis protocols for molecular signature development from microarray data

Author keywords

[No Author keywords available]

Indexed keywords

ACUTE LYMPHOCYTIC LEUKEMIA; AREA UNDER THE CURVE; ARTICLE; BREAST CANCER; CANCER SURVIVAL; DATA ANALYSIS; DNA MICROARRAY; GENE EXPRESSION; HUMAN; LIVER CELL CARCINOMA; LUNG ADENOCARCINOMA; MEDULLOBLASTOMA; MOLECULAR GENETICS; NONHODGKIN LYMPHOMA; RECEIVER OPERATING CHARACTERISTIC; SIMULATION; STATISTICAL ANALYSIS; GENETICS; NEOPLASM;

EID: 62849087796     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0004922     Document Type: Article
Times cited : (13)

References (50)
  • 1
    • 0036884167 scopus 로고    scopus 로고
    • The use and analysis of microarray data
    • Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1: 951-960.
    • (2002) Nat Rev Drug Discov , vol.1 , pp. 951-960
    • Butte, A.1
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 4
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99: 147-157.
    • (2007) J Natl Cancer Inst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 5
    • 33750727368 scopus 로고    scopus 로고
    • Genomic signatures to guide the use of chemotherapeutics
    • Potti A, Dressman HK, Bild A, Riedel RF, Chan G, et al. (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12: 1294-1300.
    • (2006) Nat Med , vol.12 , pp. 1294-1300
    • Potti, A.1    Dressman, H.K.2    Bild, A.3    Riedel, R.F.4    Chan, G.5
  • 6
    • 0031730097 scopus 로고    scopus 로고
    • Drug target validation and identification of secondary drug target effects using DNA microarrays
    • Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, et al. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4: 1293-1301.
    • (1998) Nat Med , vol.4 , pp. 1293-1301
    • Marton, M.J.1    DeRisi, J.L.2    Bennett, H.A.3    Iyer, V.R.4    Meyer, M.R.5
  • 7
    • 32944470084 scopus 로고    scopus 로고
    • Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells
    • Burczynski ME, Peterson RL, Twine NC, Zuberek KA, Brodeur BJ, et al. (2006) Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8: 51-61.
    • (2006) J Mol Diagn , vol.8 , pp. 51-61
    • Burczynski, M.E.1    Peterson, R.L.2    Twine, N.C.3    Zuberek, K.A.4    Brodeur, B.J.5
  • 8
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1    Ross, M.E.2    Shurtleff, S.A.3    Williams, W.K.4    Patel, D.5
  • 9
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1    Dai, H.2    van de Vijver, M.J.3    He, Y.D.4    Hart, A.A.5
  • 10
    • 18244389201 scopus 로고    scopus 로고
    • Standardizing global gene expression analysis between laboratories and across platforms
    • Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, et al. (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2: 351-356.
    • (2005) Nat Methods , vol.2 , pp. 351-356
    • Bammler, T.1    Beyer, R.P.2    Bhattacharya, S.3    Boorman, G.A.4    Boyles, A.5
  • 11
    • 33748491517 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements
    • Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24: 1151-1161.
    • (2006) Nat Biotechnol , vol.24 , pp. 1151-1161
    • Shi, L.1    Reid, L.H.2    Jones, W.D.3    Shippy, R.4    Warrington, J.A.5
  • 13
    • 0035991757 scopus 로고    scopus 로고
    • A paradigm for class prediction using gene expression profiles
    • Radmacher MD, McShane LM, Simon R (2002) A paradigm for class prediction using gene expression profiles. J Comput Biol 9: 505-511.
    • (2002) J Comput Biol , vol.9 , pp. 505-511
    • Radmacher, M.D.1    McShane, L.M.2    Simon, R.3
  • 16
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Lee ML, Whitmore GA (2002) Power and sample size for DNA microarray studies. Stat Med 21: 3543-3570.
    • (2002) Stat Med , vol.21 , pp. 3543-3570
    • Lee, M.L.1    Whitmore, G.A.2
  • 18
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816-824.
    • (2002) Nat Med , vol.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.L.2    Huang, C.C.3    Giordano, T.J.4    Levin, A.M.5
  • 19
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 98: 13790-13795.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3    Li, C.4    Monti, S.5
  • 20
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937-1947.
    • (2002) N Engl J Med , vol.346 , pp. 1937-1947
    • Rosenwald, A.1    Wright, G.2    Chan, W.C.3    Connors, J.M.4    Campo, E.5
  • 21
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, et al. (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361: 923-929.
    • (2003) Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1    Oka, M.2    Yamada-Okabe, H.3    Nishida, M.4    Maeda, Y.5
  • 22
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3    Sturla, L.M.4    Angelo, M.5
  • 23
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365: 488-492.
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 24
    • 33751193656 scopus 로고    scopus 로고
    • Converting a breast cancer microarray signature into a high-throughput diagnostic test
    • Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, et al. (2006) Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7: 278.
    • (2006) BMC Genomics , vol.7 , pp. 278
    • Glas, A.M.1    Floore, A.2    Delahaye, L.J.3    Witteveen, A.T.4    Pover, R.C.5
  • 25
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103: 5923-5928.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 26
    • 13444304216 scopus 로고    scopus 로고
    • Microarrays and molecular research: Noise discovery?
    • Ioannidis JP (2005) Microarrays and molecular research: noise discovery? Lancet 365: 454-455.
    • (2005) Lancet , vol.365 , pp. 454-455
    • Ioannidis, J.P.1
  • 27
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361-387.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell Jr, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 28
    • 0034368344 scopus 로고    scopus 로고
    • Should the Median Test be Retired from General Use?
    • Freidlin B, Gastwirth JL (2000) Should the Median Test be Retired from General Use? The American Statistician 54: 161-164.
    • (2000) The American Statistician , vol.54 , pp. 161-164
    • Freidlin, B.1    Gastwirth, J.L.2
  • 31
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21: 631-643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 32
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5
  • 33
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9: 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 36
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto UM, Dougherty ER (2004) Is cross-validation valid for small-sample microarray classification? Bioinformatics 20: 374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 37
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure
    • Saerens M, Latinne P, Decaestecker C (2001) Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure. Neural Computation 14: 21-41.
    • (2001) Neural Computation , vol.14 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 38
    • 37349009294 scopus 로고    scopus 로고
    • A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification
    • Jiang W, Simon R (2007) A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Stat Med 26: 5320-5334.
    • (2007) Stat Med , vol.26 , pp. 5320-5334
    • Jiang, W.1    Simon, R.2
  • 39
    • 33744808550 scopus 로고    scopus 로고
    • A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients
    • Habel LA, Shak S, Jacobs MK, Capra A, Alexander C, et al. (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8: R25.
    • (2006) Breast Cancer Res , vol.8
    • Habel, L.A.1    Shak, S.2    Jacobs, M.K.3    Capra, A.4    Alexander, C.5
  • 40
    • 19944422061 scopus 로고    scopus 로고
    • A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
    • Paik S, Shak S, Tang G, Kim C, Baker J, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817-2826.
    • (2004) N Engl J Med , vol.351 , pp. 2817-2826
    • Paik, S.1    Shak, S.2    Tang, G.3    Kim, C.4    Baker, J.5
  • 41
    • 33744814477 scopus 로고    scopus 로고
    • Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer
    • Paik S, Tang G, Shak S, Kim C, Baker J, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24: 3726-3734.
    • (2006) J Clin Oncol , vol.24 , pp. 3726-3734
    • Paik, S.1    Tang, G.2    Shak, S.3    Kim, C.4    Baker, J.5
  • 42
    • 39149113165 scopus 로고    scopus 로고
    • Development of the 21-gene assay and its application in clinical practice and clinical trials
    • Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26: 721-728.
    • (2008) J Clin Oncol , vol.26 , pp. 721-728
    • Sparano, J.A.1    Paik, S.2
  • 43
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74: 491-503.
    • (2005) Int J Med Inform , vol.74 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.F.4
  • 44
    • 40749107034 scopus 로고    scopus 로고
    • How large a training set is needed to develop a classifier for microarray data?
    • Dobbin KK, Zhao Y, Simon RM (2008) How large a training set is needed to develop a classifier for microarray data? Clin Cancer Res 14: 108-114.
    • (2008) Clin Cancer Res , vol.14 , pp. 108-114
    • Dobbin, K.K.1    Zhao, Y.2    Simon, R.M.3
  • 45
    • 33845404310 scopus 로고    scopus 로고
    • Sample size planning for developing classifiers using high-dimensional DNA microarray data
    • Dobbin KK, Simon RM (2007) Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8: 101-117.
    • (2007) Biostatistics , vol.8 , pp. 101-117
    • Dobbin, K.K.1    Simon, R.M.2
  • 46
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45: 171-186.
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 47
    • 0344441000 scopus 로고    scopus 로고
    • Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data
    • Simon R (2003) Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data. Br J Cancer 89: 1599-1604.
    • (2003) Br J Cancer , vol.89 , pp. 1599-1604
    • Simon, R.1
  • 48
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan RE, Chen PH, Lin CJ (2005) Working set selection using second order information for training support vector machines. Journal of Machine Learning Research 6: 1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 50
    • 33748955151 scopus 로고    scopus 로고
    • Challenges in the analysis of mass-throughput data: A technical commentary from the statistical machine learning perspective
    • Aliferis CF, Statnikov A, Tsamardinos I (2006) Challenges in the analysis of mass-throughput data: a technical commentary from the statistical machine learning perspective. Cancer Informatics 2: 133-162.
    • (2006) Cancer Informatics , vol.2 , pp. 133-162
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.