-
1
-
-
23044514282
-
Activating AMP-activated protein kinase without AMP
-
Birnbaum MJ (2005). Activating AMP-activated protein kinase without AMP. Mol Cell 19, 289-290.
-
(2005)
Mol Cell
, vol.19
, pp. 289-290
-
-
Birnbaum, M.J.1
-
2
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, and Hardie DG (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 9-19.
-
(2005)
Cell Metab
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
Ross, L.4
Bain, J.5
Edelman, A.M.6
Frenguelli, B.G.7
Hardie, D.G.8
-
3
-
-
34248593475
-
AMP-activated protein kinase and autophagy
-
Meijer AJ and Codogno P (2007). AMP-activated protein kinase and autophagy. Autophagy 3, 238-240.
-
(2007)
Autophagy
, vol.3
, pp. 238-240
-
-
Meijer, A.J.1
Codogno, P.2
-
4
-
-
0347627140
-
Amino acid signalling and the integration of metabolism
-
Meijer AJ and Dubbelhuis PF (2004). Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun 313, 397-403.
-
(2004)
Biochem Biophys Res Commun
, vol.313
, pp. 397-403
-
-
Meijer, A.J.1
Dubbelhuis, P.F.2
-
5
-
-
33845924783
-
AMP-activated protein kinase and the regulation of autophagic proteolysis
-
Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, and Meijer AJ (2006). AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281, 34870-34879.
-
(2006)
J Biol Chem
, vol.281
, pp. 34870-34879
-
-
Meley, D.1
Bauvy, C.2
Houben-Weerts, J.H.3
Dubbelhuis, P.F.4
Helmond, M.T.5
Codogno, P.6
Meijer, A.J.7
-
7
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
Papandreou I, Lim AL, Laderoute K, and Denko NC (2008). Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15, 1572-1581.
-
(2008)
Cell Death Differ
, vol.15
, pp. 1572-1581
-
-
Papandreou, I.1
Lim, A.L.2
Laderoute, K.3
Denko, N.C.4
-
8
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
Hardie DG (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8, 774-785.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
9
-
-
33644943620
-
AMPK: A key sensor of fuel and energy status in skeletal muscle
-
Hardie DG and Sakamoto K (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21, 48-60.
-
(2006)
Physiology (Bethesda)
, vol.21
, pp. 48-60
-
-
Hardie, D.G.1
Sakamoto, K.2
-
10
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, and Shaw RJ (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
11
-
-
33747819801
-
mTOR and cancer: Insights into a complex relationship
-
Sabatini DM (2006). mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6, 729-734.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 729-734
-
-
Sabatini, D.M.1
-
12
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, and Yonezawa K (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
13
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L, Harris TE, Roth RA, and Lawrence JC Jr (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282, 20036-20044.
-
(2007)
J Biol Chem
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence Jr, J.C.4
-
14
-
-
27644466759
-
Autophagy and signaling: Their role in cell survival and cell death
-
Codogno P and Meijer AJ (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 (Suppl 2), 1509-1518.
-
(2005)
Cell Death Differ
, vol.12
, Issue.SUPPL. 2
, pp. 1509-1518
-
-
Codogno, P.1
Meijer, A.J.2
-
15
-
-
0442323561
-
Autophagy: In sickness and in health
-
Cuervo AM (2004). Autophagy: in sickness and in health. Trends Cell Biol 14, 70-77.
-
(2004)
Trends Cell Biol
, vol.14
, pp. 70-77
-
-
Cuervo, A.M.1
-
16
-
-
22044442015
-
Autophagosomes: Biogenesis from scratch?
-
Reggiori F and Klionsky DJ (2005). Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17, 415-422.
-
(2005)
Curr Opin Cell Biol
, vol.17
, pp. 415-422
-
-
Reggiori, F.1
Klionsky, D.J.2
-
17
-
-
41249091730
-
Role of AMP-activated protein kinase in autophagy and proteasome function
-
Viana R, Aguado C, Esteban I, Moreno D, Viollet B, Knecht E, and Sanz P (2008). Role of AMP-activated protein kinase in autophagy and proteasome function. Biochem Biophys Res Commun 369, 964-968.
-
(2008)
Biochem Biophys Res Commun
, vol.369
, pp. 964-968
-
-
Viana, R.1
Aguado, C.2
Esteban, I.3
Moreno, D.4
Viollet, B.5
Knecht, E.6
Sanz, P.7
-
18
-
-
35848967804
-
How to interpret LC3 immunoblotting
-
Mizushima N and Yoshimori T (2007). How to interpret LC3 immunoblotting. Autophagy 3, 542-545.
-
(2007)
Autophagy
, vol.3
, pp. 542-545
-
-
Mizushima, N.1
Yoshimori, T.2
-
19
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, and Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
Yamamoto, A.4
Kirisako, T.5
Noda, T.6
Kominami, E.7
Ohsumi, Y.8
Yoshimori, T.9
-
20
-
-
36849051963
-
The osteoclast: A multinucleated, hematopoietic-origin, boneresorbing osteoimmune cell
-
Bar-Shavit Z (2007). The osteoclast: a multinucleated, hematopoietic-origin, boneresorbing osteoimmune cell. J Cell Biochem 102, 1130-1139.
-
(2007)
J Cell Biochem
, vol.102
, pp. 1130-1139
-
-
Bar-Shavit, Z.1
-
21
-
-
7244242357
-
Chemokines in the pathogenesis of vascular disease
-
Charo IF and Taubman MB (2004). Chemokines in the pathogenesis of vascular disease. Circ Res 95, 858-866.
-
(2004)
Circ Res
, vol.95
, pp. 858-866
-
-
Charo, I.F.1
Taubman, M.B.2
-
22
-
-
22544461319
-
The "emigration, migration, and immigration" of prostate cancer
-
Pienta KJ and Loberg R (2005). The "emigration, migration, and immigration" of prostate cancer. Clin Prostate Cancer 4, 24-30.
-
(2005)
Clin Prostate Cancer
, vol.4
, pp. 24-30
-
-
Pienta, K.J.1
Loberg, R.2
-
23
-
-
36148960830
-
Inflammatory cell infiltration of tumors: Jekyll or Hyde
-
Talmadge JE, Donkor M, and Scholar E (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26, 373-400.
-
(2007)
Cancer Metastasis Rev
, vol.26
, pp. 373-400
-
-
Talmadge, J.E.1
Donkor, M.2
Scholar, E.3
-
24
-
-
33745954520
-
CCL2 is a potent regulator of prostate cancer cell migration and proliferation
-
Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, Neeley CK, and Pienta KJ (2006). CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8, 578-586.
-
(2006)
Neoplasia
, vol.8
, pp. 578-586
-
-
Loberg, R.D.1
Day, L.L.2
Harwood, J.3
Ying, C.4
St John, L.N.5
Giles, R.6
Neeley, C.K.7
Pienta, K.J.8
-
25
-
-
53549127988
-
CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation
-
Roca H, Varsos Z, and Pienta KJ (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283, 25057-25073.
-
(2008)
J Biol Chem
, vol.283
, pp. 25057-25073
-
-
Roca, H.1
Varsos, Z.2
Pienta, K.J.3
-
26
-
-
53549113602
-
CCL2, survivin and autophagy: New links with implications in human cancer
-
Roca H, Varsos ZS, Mizutani K, and Pienta KJ (2008). CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4, 969-971.
-
(2008)
Autophagy
, vol.4
, pp. 969-971
-
-
Roca, H.1
Varsos, Z.S.2
Mizutani, K.3
Pienta, K.J.4
-
27
-
-
0032539664
-
RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1
-
Burnett PE, Barrow RK, Cohen NA, Snyder SH, and Sabatini DM(1998). RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95, 1432-1437.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 1432-1437
-
-
Burnett, P.E.1
Barrow, R.K.2
Cohen, N.A.3
Snyder, S.H.4
Sabatini, D.M.5
-
28
-
-
33846189759
-
Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
-
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25, 193-205.
-
(2007)
Mol Cell
, vol.25
, pp. 193-205
-
-
Hoyer-Hansen, M.1
Bastholm, L.2
Szyniarowski, P.3
Campanella, M.4
Szabadkai, G.5
Farkas, T.6
Bianchi, K.7
Fehrenbacher, N.8
Elling, F.9
Rizzuto, R.10
-
29
-
-
0347318052
-
The AMP-activated protein kinase cascade - a unifying system for energy control
-
Carling D (2004). The AMP-activated protein kinase cascade - a unifying system for energy control. Trends Biochem Sci 29, 18-24.
-
(2004)
Trends Biochem Sci
, vol.29
, pp. 18-24
-
-
Carling, D.1
-
30
-
-
10944247187
-
The AMP-activated protein kinase pathway - new players upstream and downstream
-
Hardie DG (2004). The AMP-activated protein kinase pathway - new players upstream and downstream. J Cell Sci 117, 5479-5487.
-
(2004)
J Cell Sci
, vol.117
, pp. 5479-5487
-
-
Hardie, D.G.1
-
31
-
-
20144389930
-
Identification of molecular target of AMP-activated protein kinase activator by affinity purification and mass spectrometry
-
Kosaka T, Okuyama R, SunW, Ogata T, Harada J, Araki K, Izumi M, Yoshida T, Okuno A, Fujiwara T, et al. (2005). Identification of molecular target of AMP-activated protein kinase activator by affinity purification and mass spectrometry. Anal Chem 77, 2050-2055.
-
(2005)
Anal Chem
, vol.77
, pp. 2050-2055
-
-
Kosaka, T.1
Okuyama, R.2
Sun, W.3
Ogata, T.4
Harada, J.5
Araki, K.6
Izumi, M.7
Yoshida, T.8
Okuno, A.9
Fujiwara, T.10
-
32
-
-
0037855834
-
Identification of a proline-rich Akt substrate as a 14-3-3 binding partner
-
Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, and Roth RA (2003). Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278, 10189-10194.
-
(2003)
J Biol Chem
, vol.278
, pp. 10189-10194
-
-
Kovacina, K.S.1
Park, G.Y.2
Bae, S.S.3
Guzzetta, A.W.4
Schaefer, E.5
Birnbaum, M.J.6
Roth, R.A.7
-
33
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, and Sabatini DM (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25, 903-915.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
34
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174.
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
-
35
-
-
24744460062
-
Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling
-
Thimmaiah KN, Easton JB, Germain GS, Morton CL, Kamath S, Buolamwini JK, and Houghton PJ (2005). Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling. J Biol Chem 280, 31924-31935.
-
(2005)
J Biol Chem
, vol.280
, pp. 31924-31935
-
-
Thimmaiah, K.N.1
Easton, J.B.2
Germain, G.S.3
Morton, C.L.4
Kamath, S.5
Buolamwini, J.K.6
Houghton, P.J.7
-
36
-
-
25444524850
-
Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity
-
Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, and Hay N (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280, 32081-32089.
-
(2005)
J Biol Chem
, vol.280
, pp. 32081-32089
-
-
Hahn-Windgassen, A.1
Nogueira, V.2
Chen, C.C.3
Skeen, J.E.4
Sonenberg, N.5
Hay, N.6
-
37
-
-
0141925771
-
Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart
-
Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, and Dyck JR (2003). Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem 278, 39422-39427.
-
(2003)
J Biol Chem
, vol.278
, pp. 39422-39427
-
-
Kovacic, S.1
Soltys, C.L.2
Barr, A.J.3
Shiojima, I.4
Walsh, K.5
Dyck, J.R.6
-
38
-
-
0037157143
-
Ro 31-6045, the inactive analogue of the protein kinase C inhibitor Ro 31-8220, blocks in vivo activation of p70(s6k)/p85(s6k): Implications for the analysis of S6K signalling
-
Marmy-Conus N, Hannan KM, and Pearson RB (2002). Ro 31-6045, the inactive analogue of the protein kinase C inhibitor Ro 31-8220, blocks in vivo activation of p70(s6k)/p85(s6k): implications for the analysis of S6K signalling. FEBS Lett 519, 135-140.
-
(2002)
FEBS Lett
, vol.519
, pp. 135-140
-
-
Marmy-Conus, N.1
Hannan, K.M.2
Pearson, R.B.3
-
39
-
-
0025942516
-
The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C
-
Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-PerretT, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, et al. (1991). The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266, 15771-15781.
-
(1991)
J Biol Chem
, vol.266
, pp. 15771-15781
-
-
Toullec, D.1
Pianetti, P.2
Coste, H.3
Bellevergue, P.4
PerretT, G.5
Ajakane, M.6
Baudet, V.7
Boissin, P.8
Boursier, E.9
Loriolle, F.10
-
40
-
-
35448981935
-
Autophagy: From phenomenology to molecular understanding in less than a decade
-
Klionsky DJ (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931-937.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 931-937
-
-
Klionsky, D.J.1
-
41
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, and Klionsky DJ (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
42
-
-
34147193472
-
Cell biology: Autophagy and cancer
-
Levine B (2007). Cell biology: autophagy and cancer. Nature 446, 745-747.
-
(2007)
Nature
, vol.446
, pp. 745-747
-
-
Levine, B.1
-
43
-
-
0035863399
-
A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles
-
Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, and Yahalom J (2001). A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61, 439-444.
-
(2001)
Cancer Res
, vol.61
, pp. 439-444
-
-
Paglin, S.1
Hollister, T.2
Delohery, T.3
Hackett, N.4
McMahill, M.5
Sphicas, E.6
Domingo, D.7
Yahalom, J.8
-
44
-
-
34548188741
-
Self-eating and self-killing: Crosstalk between autophagy and apoptosis
-
Maiuri MC, Zalckvar E, Kimchi A, and Kroemer G (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 741-752
-
-
Maiuri, M.C.1
Zalckvar, E.2
Kimchi, A.3
Kroemer, G.4
-
46
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, and Carling D (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403, 139-148.
-
(2007)
Biochem J
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
Snowden, M.A.4
Carling, D.5
-
47
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, and Cantley LC (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101, 3329-3335.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
Cantley, L.C.7
-
48
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, and Cantley LC (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91-99.
-
(2004)
Cancer Cell
, vol.6
, pp. 91-99
-
-
Shaw, R.J.1
Bardeesy, N.2
Manning, B.D.3
Lopez, L.4
Kosmatka, M.5
DePinho, R.A.6
Cantley, L.C.7
-
49
-
-
11244300732
-
LKB1, the multitasking tumour suppressor kinase
-
Marignani PA (2005). LKB1, the multitasking tumour suppressor kinase. J Clin Pathol 58, 15-19.
-
(2005)
J Clin Pathol
, vol.58
, pp. 15-19
-
-
Marignani, P.A.1
-
50
-
-
29244474612
-
-
Wei C, Amos CI, Stephens LC, Campos I, Deng JM, Behringer RR, Rashid A, and Frazier ML (2005). Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res 65, 11297-11303. Lung Carcinoma Cells1,2
-
Wei C, Amos CI, Stephens LC, Campos I, Deng JM, Behringer RR, Rashid A, and Frazier ML (2005). Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res 65, 11297-11303. Lung Carcinoma Cells1,2
-
-
-
|