메뉴 건너뛰기




Volumn 584, Issue 2, 2010, Pages 366-375

tRNA as an active chemical scaffold for diverse chemical transformations

Author keywords

AA tRNA; Amino acid biosynthesis; Antibiotic synthesis; Membrane modification; Peptidoglycan synthesis

Indexed keywords

AMINOACYL TRANSFER RNA; ANTIBIOTIC AGENT; PEPTIDOGLYCAN; RIBONUCLEASE; SELENOCYSTEINE; SERINE TRANSFER RNA; TETRAPYRROLE DERIVATIVE; TRANSFER RNA; UNCLASSIFIED DRUG; VALANIMYCIN;

EID: 71549148346     PISSN: 00145793     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.febslet.2009.11.045     Document Type: Review
Times cited : (48)

References (102)
  • 1
    • 0016912825 scopus 로고
    • Transfer RNA: molecular structure, sequence, and properties
    • Rich A., and RajBhandary U.L. Transfer RNA: molecular structure, sequence, and properties. Annu. Rev. Biochem. 45 (1976) 805-860
    • (1976) Annu. Rev. Biochem. , vol.45 , pp. 805-860
    • Rich, A.1    RajBhandary, U.L.2
  • 3
    • 0014324873 scopus 로고
    • Transfer RNA as a cofactor coupling amino acid synthesis with that of protein
    • Wilcox M., and Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. Natl. Acad. Sci. USA 61 (1968) 229-236
    • (1968) Proc. Natl. Acad. Sci. USA , vol.61 , pp. 229-236
    • Wilcox, M.1    Nirenberg, M.2
  • 4
    • 0013794061 scopus 로고
    • Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates
    • Matsuhashi M., Dietrich C.P., and Strominger J.L. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc. Natl. Acad. Sci. USA 54 (1965) 587-594
    • (1965) Proc. Natl. Acad. Sci. USA , vol.54 , pp. 587-594
    • Matsuhashi, M.1    Dietrich, C.P.2    Strominger, J.L.3
  • 5
    • 0013898140 scopus 로고
    • The participation of sRNA in the enzymatic synthesis of O-l-lysyl phosphatidylgylcerol in Staphylococcus aureus
    • Lennarz W.J., Nesbitt III J.A., and Reiss J. The participation of sRNA in the enzymatic synthesis of O-l-lysyl phosphatidylgylcerol in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 55 (1966) 934-941
    • (1966) Proc. Natl. Acad. Sci. USA , vol.55 , pp. 934-941
    • Lennarz, W.J.1    Nesbitt III, J.A.2    Reiss, J.3
  • 6
    • 0003075565 scopus 로고
    • On the problems on evolution and biochemical information transfer
    • Kasha M., and Pullman B. (Eds), Academic Press, New York
    • Rich A. On the problems on evolution and biochemical information transfer. In: Kasha M., and Pullman B. (Eds). Horizons in Biochemistry (1962), Academic Press, New York 103-126
    • (1962) Horizons in Biochemistry , pp. 103-126
    • Rich, A.1
  • 8
    • 0017232521 scopus 로고
    • Coenzymes as fossils of an earlier metabolic state
    • White III H.B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7 (1976) 101-104
    • (1976) J. Mol. Evol. , vol.7 , pp. 101-104
    • White III, H.B.1
  • 9
    • 0021013526 scopus 로고
    • The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme
    • Guerrier-Takada C., Gardiner K., Marsh T., Pace N., and Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35 (1983) 849-857
    • (1983) Cell , vol.35 , pp. 849-857
    • Guerrier-Takada, C.1    Gardiner, K.2    Marsh, T.3    Pace, N.4    Altman, S.5
  • 10
    • 0026639881 scopus 로고
    • Unusual resistance of peptidyl transferase to protein extraction procedures
    • Noller H.F., Hoffarth V., and Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256 (1992) 1416-1419
    • (1992) Science , vol.256 , pp. 1416-1419
    • Noller, H.F.1    Hoffarth, V.2    Zimniak, L.3
  • 11
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban N., Nissen P., Hansen J., Moore P.B., and Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 (2000) 905-920
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3    Moore, P.B.4    Steitz, T.A.5
  • 12
    • 0025194307 scopus 로고
    • Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase
    • Tuerk C., and Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (1990) 505-510
    • (1990) Science , vol.249 , pp. 505-510
    • Tuerk, C.1    Gold, L.2
  • 13
    • 60149088848 scopus 로고    scopus 로고
    • Origins and mechanisms of miRNAs and siRNAs
    • Carthew R.W., and Sontheimer E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136 (2009) 642-655
    • (2009) Cell , vol.136 , pp. 642-655
    • Carthew, R.W.1    Sontheimer, E.J.2
  • 14
    • 33646568156 scopus 로고    scopus 로고
    • Participation of the tRNA A76 hydroxyl groups throughout translation
    • Weinger J.S., and Strobel S.A. Participation of the tRNA A76 hydroxyl groups throughout translation. Biochemistry 45 (2006) 5939-5948
    • (2006) Biochemistry , vol.45 , pp. 5939-5948
    • Weinger, J.S.1    Strobel, S.A.2
  • 15
    • 34247589630 scopus 로고    scopus 로고
    • The ribosomal peptidyl transferase
    • Beringer M., and Rodnina M.V. The ribosomal peptidyl transferase. Mol. Cell 26 (2007) 311-321
    • (2007) Mol. Cell , vol.26 , pp. 311-321
    • Beringer, M.1    Rodnina, M.V.2
  • 16
    • 0034757629 scopus 로고    scopus 로고
    • pH-dependent conformational flexibility within the ribosomal peptidyl transferase center
    • Muth G.W., Chen L., Kosek A.B., and Strobel S.A. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA 7 (2001) 1403-1415
    • (2001) RNA , vol.7 , pp. 1403-1415
    • Muth, G.W.1    Chen, L.2    Kosek, A.B.3    Strobel, S.A.4
  • 17
    • 0035979232 scopus 로고    scopus 로고
    • Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit
    • Thompson J., et al. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 98 (2001) 9002-9007
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 9002-9007
    • Thompson, J.1
  • 18
    • 0035942753 scopus 로고    scopus 로고
    • Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide
    • Polacek N., Gaynor M., Yassin A., and Mankin A.S. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411 (2001) 498-501
    • (2001) Nature , vol.411 , pp. 498-501
    • Polacek, N.1    Gaynor, M.2    Yassin, A.3    Mankin, A.S.4
  • 19
    • 27644557445 scopus 로고    scopus 로고
    • Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction
    • Schmeing T.M., Huang K.S., Kitchen D.E., Strobel S.A., and Steitz T.A. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20 (2005) 437-448
    • (2005) Mol. Cell , vol.20 , pp. 437-448
    • Schmeing, T.M.1    Huang, K.S.2    Kitchen, D.E.3    Strobel, S.A.4    Steitz, T.A.5
  • 22
    • 33745048734 scopus 로고    scopus 로고
    • Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer
    • Trobro S., and Aqvist J. Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45 (2006) 7049-7056
    • (2006) Biochemistry , vol.45 , pp. 7049-7056
    • Trobro, S.1    Aqvist, J.2
  • 23
    • 56649088287 scopus 로고    scopus 로고
    • RNA-assisted catalysis in a protein enzyme: the 2′-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase
    • Minajigi A., and Francklyn C.S. RNA-assisted catalysis in a protein enzyme: the 2′-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 105 (2008) 17748-17753
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17748-17753
    • Minajigi, A.1    Francklyn, C.S.2
  • 24
    • 0033617335 scopus 로고    scopus 로고
    • Tyr complex enlightens its repressor activity and reveals an essential zinc ion in the active site
    • Tyr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97 (1999) 371-381
    • (1999) Cell , vol.97 , pp. 371-381
    • Sankaranarayanan, R.1
  • 25
    • 1542743968 scopus 로고    scopus 로고
    • Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase
    • LeBrun L.A., Park D.H., Ramaswamy S., and Plapp B.V. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. Biochemistry 43 (2004) 3014-3026
    • (2004) Biochemistry , vol.43 , pp. 3014-3026
    • LeBrun, L.A.1    Park, D.H.2    Ramaswamy, S.3    Plapp, B.V.4
  • 26
    • 33846085054 scopus 로고    scopus 로고
    • Mechanism of tRNA-dependent editing in translational quality control
    • Ling J., Roy H., and Ibba M. Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl. Acad. Sci. USA 104 (2007) 72-77
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 72-77
    • Ling, J.1    Roy, H.2    Ibba, M.3
  • 27
    • 0017180250 scopus 로고
    • Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine
    • von der Haar F., and Cramer F. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine. Biochemistry 15 (1976) 4131-4138
    • (1976) Biochemistry , vol.15 , pp. 4131-4138
    • von der Haar, F.1    Cramer, F.2
  • 28
    • 0037036357 scopus 로고    scopus 로고
    • Plasticity of recognition of the 3′-end of mischarged tRNA by class I aminoacyl-tRNA synthetases
    • Nordin B.E., and Schimmel P. Plasticity of recognition of the 3′-end of mischarged tRNA by class I aminoacyl-tRNA synthetases. J. Biol. Chem. 277 (2002) 20510-20517
    • (2002) J. Biol. Chem. , vol.277 , pp. 20510-20517
    • Nordin, B.E.1    Schimmel, P.2
  • 30
    • 4344682733 scopus 로고    scopus 로고
    • Selenocysteine
    • Ibba M., Francklyn C., and Cusack S. (Eds), Landes Bioscience, Georgetown, TX
    • Bock A., Thanbichler M., Rother M., and Resch A. Selenocysteine. In: Ibba M., Francklyn C., and Cusack S. (Eds). The Aminoacyl-tRNA Synthetases (2005), Landes Bioscience, Georgetown, TX 320-327
    • (2005) The Aminoacyl-tRNA Synthetases , pp. 320-327
    • Bock, A.1    Thanbichler, M.2    Rother, M.3    Resch, A.4
  • 31
    • 0030613553 scopus 로고    scopus 로고
    • Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
    • (see comment)
    • Curnow A.W., Hong K., Yuan R., Kim S., Martins O., Winkler W., Henkin T.M., and Soll D. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. USA 94 (1997) 11819-11826 (see comment)
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 11819-11826
    • Curnow, A.W.1    Hong, K.2    Yuan, R.3    Kim, S.4    Martins, O.5    Winkler, W.6    Henkin, T.M.7    Soll, D.8
  • 32
    • 0034618571 scopus 로고    scopus 로고
    • Domain-specific recruitment of amide amino acids for protein synthesis
    • Tumbula D.L., Becker H.D., Chang W.Z., and Soll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407 (2000) 106-110
    • (2000) Nature , vol.407 , pp. 106-110
    • Tumbula, D.L.1    Becker, H.D.2    Chang, W.Z.3    Soll, D.4
  • 33
    • 33745596803 scopus 로고    scopus 로고
    • Ammonia channel couples glutaminase with transamidase reactions in GatCAB
    • Nakamura A., Yao M., Chimnaronk S., Sakai N., and Tanaka I. Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312 (2006) 1954-1958
    • (2006) Science , vol.312 , pp. 1954-1958
    • Nakamura, A.1    Yao, M.2    Chimnaronk, S.3    Sakai, N.4    Tanaka, I.5
  • 34
    • 33745587780 scopus 로고    scopus 로고
    • Structural basis of RNA-dependent recruitment of glutamine to the genetic code
    • Oshikane H., et al. Structural basis of RNA-dependent recruitment of glutamine to the genetic code. Science 312 (2006) 1950-1954
    • (2006) Science , vol.312 , pp. 1950-1954
    • Oshikane, H.1
  • 35
    • 68949088441 scopus 로고    scopus 로고
    • Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli
    • Guth E., Farris M., Bovee M., and Francklyn C.S. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. J. Biol. Chem. 284 (2009) 20753-20762
    • (2009) J. Biol. Chem. , vol.284 , pp. 20753-20762
    • Guth, E.1    Farris, M.2    Bovee, M.3    Francklyn, C.S.4
  • 36
    • 33847023388 scopus 로고    scopus 로고
    • Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase
    • Guth E.C., and Francklyn C.S. Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol. Cell 25 (2007) 531-542
    • (2007) Mol. Cell , vol.25 , pp. 531-542
    • Guth, E.C.1    Francklyn, C.S.2
  • 37
    • 0035812828 scopus 로고    scopus 로고
    • Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation
    • LaRiviere F.J., Wolfson A.D., and Uhlenbeck O.C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294 (2001) 165-168
    • (2001) Science , vol.294 , pp. 165-168
    • LaRiviere, F.J.1    Wolfson, A.D.2    Uhlenbeck, O.C.3
  • 38
    • 27944508307 scopus 로고    scopus 로고
    • Amino acid specificity in translation
    • Dale T., and Uhlenbeck O.C. Amino acid specificity in translation. Trends Biochem. Sci. 30 (2005) 659-665
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 659-665
    • Dale, T.1    Uhlenbeck, O.C.2
  • 39
    • 35348989769 scopus 로고    scopus 로고
    • The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis
    • Bailly M., Blaise M., Lorber B., Becker H.D., and Kern D. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell 28 (2007) 228-239
    • (2007) Mol. Cell , vol.28 , pp. 228-239
    • Bailly, M.1    Blaise, M.2    Lorber, B.3    Becker, H.D.4    Kern, D.5
  • 40
    • 67649097182 scopus 로고    scopus 로고
    • Isolation, crystallization and preliminary X-ray analysis of the transamidosome, a ribonucleoprotein involved in asparagine formation
    • Bailly M., Blaise M., Lorber B., Thirup S., and Kern D. Isolation, crystallization and preliminary X-ray analysis of the transamidosome, a ribonucleoprotein involved in asparagine formation. Acta Cryst. F: Struct. Biol. Cryst. Commun. 65 (2009) 577-581
    • (2009) Acta Cryst. F: Struct. Biol. Cryst. Commun. , vol.65 , pp. 577-581
    • Bailly, M.1    Blaise, M.2    Lorber, B.3    Thirup, S.4    Kern, D.5
  • 41
    • 20144380970 scopus 로고    scopus 로고
    • RNA-dependent cysteine biosynthesis in archaea
    • Sauerwald A., et al. RNA-dependent cysteine biosynthesis in archaea. Science 307 (2005) 1969-1972
    • (2005) Science , vol.307 , pp. 1969-1972
    • Sauerwald, A.1
  • 42
    • 0032699830 scopus 로고    scopus 로고
    • Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis
    • Li T., et al. Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett. 462 (1999) 302-306
    • (1999) FEBS Lett. , vol.462 , pp. 302-306
    • Li, T.1
  • 44
    • 52049114456 scopus 로고    scopus 로고
    • Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei
    • Hauenstein S.I., and Perona J.J. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J. Biol. Chem. 283 (2008) 22007-22017
    • (2008) J. Biol. Chem. , vol.283 , pp. 22007-22017
    • Hauenstein, S.I.1    Perona, J.J.2
  • 45
    • 34249337418 scopus 로고    scopus 로고
    • Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus
    • Fukunaga R., and Yokoyama S. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. J. Mol. Biol. 370 (2007) 128-141
    • (2007) J. Mol. Biol. , vol.370 , pp. 128-141
    • Fukunaga, R.1    Yokoyama, S.2
  • 47
    • 43249105572 scopus 로고    scopus 로고
    • Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys)
    • Zhang C.M., Liu C., Slater S., and Hou Y.M. Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys). Nat. Struct. Mol. Biol. 15 (2008) 507-514
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 507-514
    • Zhang, C.M.1    Liu, C.2    Slater, S.3    Hou, Y.M.4
  • 48
    • 33847257897 scopus 로고    scopus 로고
    • Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase
    • Kamtekar S., Hohn M.J., Park H.S., Schnitzbauer M., Sauerwald A., Soll D., and Steitz T.A. Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 104 (2007) 2620-2625
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 2620-2625
    • Kamtekar, S.1    Hohn, M.J.2    Park, H.S.3    Schnitzbauer, M.4    Sauerwald, A.5    Soll, D.6    Steitz, T.A.7
  • 49
    • 34247234997 scopus 로고    scopus 로고
    • Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea
    • Fukunaga R., and Yokoyama S. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nat. Struct. Mol. Biol. 14 (2007) 272-279
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 272-279
    • Fukunaga, R.1    Yokoyama, S.2
  • 50
    • 0025736565 scopus 로고
    • Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence
    • Forchhammer K., and Bock A. Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J. Biol. Chem. 266 (1991) 6324-6328
    • (1991) J. Biol. Chem. , vol.266 , pp. 6324-6328
    • Forchhammer, K.1    Bock, A.2
  • 51
    • 33846343236 scopus 로고    scopus 로고
    • Biosynthesis of selenocysteine on its tRNA in eukaryotes
    • (see comment)
    • Xu X.M., et al. Biosynthesis of selenocysteine on its tRNA in eukaryotes. Plos Biol. 5 (2007) e4 (see comment)
    • (2007) Plos Biol. , vol.5
    • Xu, X.M.1
  • 53
    • 33845763611 scopus 로고    scopus 로고
    • RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea
    • Yuan J., et al. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc. Natl. Acad. Sci. USA 103 (2006) 18923-18927
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 18923-18927
    • Yuan, J.1
  • 54
    • 40249116863 scopus 로고    scopus 로고
    • Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation
    • Araiso Y., et al. Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation. Nucl. Acid Res. 36 (2008) 1187-1199
    • (2008) Nucl. Acid Res. , vol.36 , pp. 1187-1199
    • Araiso, Y.1
  • 56
    • 67650815502 scopus 로고    scopus 로고
    • The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation
    • Palioura S., Sherrer R.L., Steitz T.A., Soll D., and Simonovic M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 325 (2009) 321-325
    • (2009) Science , vol.325 , pp. 321-325
    • Palioura, S.1    Sherrer, R.L.2    Steitz, T.A.3    Soll, D.4    Simonovic, M.5
  • 58
    • 0010160956 scopus 로고
    • Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureus
    • Chatterjee A.N., and Park J.T. Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 51 (1964) 9-16
    • (1964) Proc. Natl. Acad. Sci. USA , vol.51 , pp. 9-16
    • Chatterjee, A.N.1    Park, J.T.2
  • 59
    • 0014429152 scopus 로고
    • Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus
    • Niyomporn B., Dahl J.L., and Strominger J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus. J. Biol. Chem. 243 (1968) 773-778
    • (1968) J. Biol. Chem. , vol.243 , pp. 773-778
    • Niyomporn, B.1    Dahl, J.L.2    Strominger, J.L.3
  • 60
    • 0014429157 scopus 로고
    • Biosynthesis of the peptidoglycan of bacterial cell walls. VII. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis
    • Petit J.F., Strominger J.L., and Soll D. Biosynthesis of the peptidoglycan of bacterial cell walls. VII. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis. J. Biol. Chem. 243 (1968) 757-767
    • (1968) J. Biol. Chem. , vol.243 , pp. 757-767
    • Petit, J.F.1    Strominger, J.L.2    Soll, D.3
  • 61
    • 0014429154 scopus 로고
    • Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of l-threonine into interpeptide bridges in Micrococcus roseus
    • Roberts W.S., Strominger J.L., and Soll D. Biosynthesis of the peptidoglycan of bacterial cell walls. VI. Incorporation of l-threonine into interpeptide bridges in Micrococcus roseus. J. Biol. Chem. 243 (1968) 749-756
    • (1968) J. Biol. Chem. , vol.243 , pp. 749-756
    • Roberts, W.S.1    Strominger, J.L.2    Soll, D.3
  • 62
    • 0014429135 scopus 로고
    • Biosynthesis of the peptidoglycan of bacterial cell walls. X. Further study of the glycyl transfer ribonucleic acids active in peptidoglycan synthesis in Staphylococcus aureus
    • Bumsted R.M., Dahl J.L., Soll D., and Strominger J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. X. Further study of the glycyl transfer ribonucleic acids active in peptidoglycan synthesis in Staphylococcus aureus. J. Biol. Chem. 243 (1968) 779-782
    • (1968) J. Biol. Chem. , vol.243 , pp. 779-782
    • Bumsted, R.M.1    Dahl, J.L.2    Soll, D.3    Strominger, J.L.4
  • 64
    • 0033529856 scopus 로고    scopus 로고
    • The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation
    • Rohrer S., Ehlert K., Tschierske M., Labischinski H., and Berger-Bachi B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA 96 (1999) 9351-9356
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 9351-9356
    • Rohrer, S.1    Ehlert, K.2    Tschierske, M.3    Labischinski, H.4    Berger-Bachi, B.5
  • 65
    • 0015501773 scopus 로고
    • The biosynthesis of the cross-linking peptides in the cell wall peptidoglycan of Staphylococcus aureus
    • Kamiryo T., and Matsuhashi M. The biosynthesis of the cross-linking peptides in the cell wall peptidoglycan of Staphylococcus aureus. J. Biol. Chem. 247 (1972) 6306-6311
    • (1972) J. Biol. Chem. , vol.247 , pp. 6306-6311
    • Kamiryo, T.1    Matsuhashi, M.2
  • 66
    • 0030716395 scopus 로고    scopus 로고
    • Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation
    • Ehlert K., Schroder W., and Labischinski H. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J. Bacteriol. 179 (1997) 7573-7576
    • (1997) J. Bacteriol. , vol.179 , pp. 7573-7576
    • Ehlert, K.1    Schroder, W.2    Labischinski, H.3
  • 67
    • 4744353202 scopus 로고    scopus 로고
    • Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in gram-positive bacteria
    • Arbeloa A., et al. Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in gram-positive bacteria. J. Biol. Chem. 279 (2004) 41546-41556
    • (2004) J. Biol. Chem. , vol.279 , pp. 41546-41556
    • Arbeloa, A.1
  • 68
    • 1242283845 scopus 로고    scopus 로고
    • Crystal structures of Weissella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition
    • Biarrotte-Sorin S., Maillard A.P., Delettre J., Sougakoff W., Arthur M., and Mayer C. Crystal structures of Weissella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition. Structure 12 (2004) 257-267
    • (2004) Structure , vol.12 , pp. 257-267
    • Biarrotte-Sorin, S.1    Maillard, A.P.2    Delettre, J.3    Sougakoff, W.4    Arthur, M.5    Mayer, C.6
  • 69
    • 0036054290 scopus 로고    scopus 로고
    • X-ray crystal structure of Staphylococcus aureus FemA
    • Benson T.E., et al. X-ray crystal structure of Staphylococcus aureus FemA. Structure 10 (2002) 1107-1115
    • (2002) Structure , vol.10 , pp. 1107-1115
    • Benson, T.E.1
  • 70
    • 0037589849 scopus 로고    scopus 로고
    • Kinetic and mechanistic characterization of recombinant Lactobacillus viridescens FemX (UDP-N-acetylmuramoyl pentapeptide-lysine N6-alanyltransferase)
    • Hegde S.S., and Blanchard J.S. Kinetic and mechanistic characterization of recombinant Lactobacillus viridescens FemX (UDP-N-acetylmuramoyl pentapeptide-lysine N6-alanyltransferase). J. Biol. Chem. 278 (2003) 22861-22867
    • (2003) J. Biol. Chem. , vol.278 , pp. 22861-22867
    • Hegde, S.S.1    Blanchard, J.S.2
  • 71
    • 36749012916 scopus 로고    scopus 로고
    • Idiosyncratic features in tRNAs participating in bacterial cell wall synthesis
    • Villet R., et al. Idiosyncratic features in tRNAs participating in bacterial cell wall synthesis. Nucl. Acid Res. 35 (2007) 6870-8683
    • (2007) Nucl. Acid Res. , vol.35 , pp. 6870-8683
    • Villet, R.1
  • 73
    • 35548990179 scopus 로고    scopus 로고
    • Stable analogues of aminoacyl-tRNA for inhibition of an essential step of bacterial cell-wall synthesis
    • Chemama M., Fonvielle M., Villet R., Arthur M., Valery J.M., and Etheve-Quelquejeu M. Stable analogues of aminoacyl-tRNA for inhibition of an essential step of bacterial cell-wall synthesis. J. Am. Chem. Soc. 129 (2007) 12642-12643
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 12642-12643
    • Chemama, M.1    Fonvielle, M.2    Villet, R.3    Arthur, M.4    Valery, J.M.5    Etheve-Quelquejeu, M.6
  • 74
    • 33947713897 scopus 로고    scopus 로고
    • The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies
    • Mogk A., Schmidt R., and Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17 (2007) 165-172
    • (2007) Trends Cell Biol. , vol.17 , pp. 165-172
    • Mogk, A.1    Schmidt, R.2    Bukau, B.3
  • 75
    • 0021987592 scopus 로고
    • Transfer RNA is an essential component of the ubiquitin- and ATP-dependent proteolytic system
    • Ciechanover A., Wolin S.L., Steitz J.A., and Lodish H.F. Transfer RNA is an essential component of the ubiquitin- and ATP-dependent proteolytic system. Proc. Natl. Acad. Sci. USA 82 (1985) 1341-1345
    • (1985) Proc. Natl. Acad. Sci. USA , vol.82 , pp. 1341-1345
    • Ciechanover, A.1    Wolin, S.L.2    Steitz, J.A.3    Lodish, H.F.4
  • 76
    • 0029861143 scopus 로고    scopus 로고
    • The N-end rule: functions, mysteries, uses
    • Varshavsky A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93 (1996) 12142-12149
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 12142-12149
    • Varshavsky, A.1
  • 78
    • 33845706511 scopus 로고    scopus 로고
    • Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog
    • Suto K., Shimizu Y., Watanabe K., Ueda T., Fukai S., Nureki O., and Tomita K. Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog. EMBO J. 25 (2006) 5942-5950
    • (2006) EMBO J. , vol.25 , pp. 5942-5950
    • Suto, K.1    Shimizu, Y.2    Watanabe, K.3    Ueda, T.4    Fukai, S.5    Nureki, O.6    Tomita, K.7
  • 79
    • 0029788178 scopus 로고    scopus 로고
    • Aminoacyl-tRNA recognition by the leucyl/phenylalanyl-tRNA-protein transferase
    • Abramochkin G., and Shrader T.E. Aminoacyl-tRNA recognition by the leucyl/phenylalanyl-tRNA-protein transferase. J. Biol. Chem. 271 (1996) 22901-22907
    • (1996) J. Biol. Chem. , vol.271 , pp. 22901-22907
    • Abramochkin, G.1    Shrader, T.E.2
  • 80
    • 35348938968 scopus 로고    scopus 로고
    • Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase
    • Watanabe K., Toh Y., Suto K., Shimizu Y., Oka N., Wada T., and Tomita K. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449 (2007) 867-871
    • (2007) Nature , vol.449 , pp. 867-871
    • Watanabe, K.1    Toh, Y.2    Suto, K.3    Shimizu, Y.4    Oka, N.5    Wada, T.6    Tomita, K.7
  • 82
    • 33745194211 scopus 로고    scopus 로고
    • Molecular mechanisms of bacterial resistance to antimicrobial peptides
    • Kraus D., and Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr. Top. Microbiol. Immun. 306 (2006) 231-250
    • (2006) Curr. Top. Microbiol. Immun. , vol.306 , pp. 231-250
    • Kraus, D.1    Peschel, A.2
  • 83
    • 0035821289 scopus 로고    scopus 로고
    • Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine
    • Peschel A., et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193 (2001) 1067-1076
    • (2001) J. Exp. Med. , vol.193 , pp. 1067-1076
    • Peschel, A.1
  • 84
    • 42449118064 scopus 로고    scopus 로고
    • RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors
    • Roy H., and Ibba M. RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc. Natl. Acad. Sci. USA 105 (2008) 4667-4672
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 4667-4672
    • Roy, H.1    Ibba, M.2
  • 85
    • 58449113932 scopus 로고    scopus 로고
    • Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol
    • (see comment)
    • Klein S., et al. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol. Microbiol. 71 (2009) 551-565 (see comment)
    • (2009) Mol. Microbiol. , vol.71 , pp. 551-565
    • Klein, S.1
  • 86
    • 28444471602 scopus 로고    scopus 로고
    • DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model
    • Weidenmaier C., Peschel A., Kempf V.A., Lucindo N., Yeaman M.R., and Bayer A.S. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Inf. Immun. 73 (2005) 8033-8038
    • (2005) Inf. Immun. , vol.73 , pp. 8033-8038
    • Weidenmaier, C.1    Peschel, A.2    Kempf, V.A.3    Lucindo, N.4    Yeaman, M.R.5    Bayer, A.S.6
  • 87
    • 0022624586 scopus 로고
    • Isolation and properties of valanimycin, a new azoxy antibiotic
    • Yamato M., et al. Isolation and properties of valanimycin, a new azoxy antibiotic. J. Antibiot. 39 (1986) 184-191
    • (1986) J. Antibiot. , vol.39 , pp. 184-191
    • Yamato, M.1
  • 88
    • 0036428626 scopus 로고    scopus 로고
    • Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin
    • Garg R.P., Ma Y., Hoyt J.C., and Parry R.J. Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin. Mol. Microbiol. 46 (2002) 505-517
    • (2002) Mol. Microbiol. , vol.46 , pp. 505-517
    • Garg, R.P.1    Ma, Y.2    Hoyt, J.C.3    Parry, R.J.4
  • 89
    • 33748754614 scopus 로고    scopus 로고
    • Biochemical characterization of VlmL, a seryl-tRNA synthetase encoded by the valanimycin biosynthetic gene cluster
    • Garg R.P., Gonzalez J.M., and Parry R.J. Biochemical characterization of VlmL, a seryl-tRNA synthetase encoded by the valanimycin biosynthetic gene cluster. J. Biol. Chem. 281 (2006) 26785-26791
    • (2006) J. Biol. Chem. , vol.281 , pp. 26785-26791
    • Garg, R.P.1    Gonzalez, J.M.2    Parry, R.J.3
  • 90
    • 44349190780 scopus 로고    scopus 로고
    • Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA
    • Garg R.P., Qian X.L., Alemany L.B., Moran S., and Parry R.J. Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc. Natl. Acad. Sci. USA 105 (2008) 6543-6547
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 6543-6547
    • Garg, R.P.1    Qian, X.L.2    Alemany, L.B.3    Moran, S.4    Parry, R.J.5
  • 91
    • 67650504286 scopus 로고    scopus 로고
    • Identification, characterization, and bioconversion of a new intermediate in valanimycin
    • Garg R.P., Alemany L.B., Moran S., and Parry R.J. Identification, characterization, and bioconversion of a new intermediate in valanimycin. J. Am. Chem. Soc. 131 (2009) 9608-9609
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 9608-9609
    • Garg, R.P.1    Alemany, L.B.2    Moran, S.3    Parry, R.J.4
  • 92
    • 65949084690 scopus 로고    scopus 로고
    • Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes
    • Gondry M., et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5 (2009) 414-420
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 414-420
    • Gondry, M.1
  • 94
    • 0021135330 scopus 로고
    • delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity
    • Huang D.D., Wang W.Y., Gough S.P., and Kannangara C.G. delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225 (1984) 1482-1484
    • (1984) Science , vol.225 , pp. 1482-1484
    • Huang, D.D.1    Wang, W.Y.2    Gough, S.P.3    Kannangara, C.G.4
  • 95
    • 0023051874 scopus 로고
    • The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA
    • Schon A., Krupp G., Gough S., Berry-Lowe S., Kannangara C.G., and Soll D. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322 (1986) 281-284
    • (1986) Nature , vol.322 , pp. 281-284
    • Schon, A.1    Krupp, G.2    Gough, S.3    Berry-Lowe, S.4    Kannangara, C.G.5    Soll, D.6
  • 96
    • 0023032783 scopus 로고
    • Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA
    • Huang D.D., and Wang W.Y. Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J. Biol. Chem. 261 (1986) 13451-13455
    • (1986) J. Biol. Chem. , vol.261 , pp. 13451-13455
    • Huang, D.D.1    Wang, W.Y.2
  • 97
    • 2442544796 scopus 로고
    • Stimulation of delta-aminolevulinic acid formation in algal extracts by heterologous RNA
    • Weinstein J.D., Mayer S.M., and Beale S.I. Stimulation of delta-aminolevulinic acid formation in algal extracts by heterologous RNA. Plant Physiol. 82 (1986) 1096-1101
    • (1986) Plant Physiol. , vol.82 , pp. 1096-1101
    • Weinstein, J.D.1    Mayer, S.M.2    Beale, S.I.3
  • 98
    • 0023656125 scopus 로고
    • Enzymatic conversion of glutamate to delta-aminolevulinic acid in soluble extracts of Euglena gracilis
    • Mayer S.M., Beale S.I., and Weinstein J.D. Enzymatic conversion of glutamate to delta-aminolevulinic acid in soluble extracts of Euglena gracilis. J. Biol. Chem. 262 (1987) 12541-12549
    • (1987) J. Biol. Chem. , vol.262 , pp. 12541-12549
    • Mayer, S.M.1    Beale, S.I.2    Weinstein, J.D.3
  • 99
    • 2242483770 scopus 로고    scopus 로고
    • Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate
    • Schauer S., et al. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J. Biol. Chem. 277 (2002) 48657-48663
    • (2002) J. Biol. Chem. , vol.277 , pp. 48657-48663
    • Schauer, S.1
  • 101
    • 4544384168 scopus 로고    scopus 로고
    • TRNA recognition by glutamyl-tRNA reductase
    • Randau L., et al. TRNA recognition by glutamyl-tRNA reductase. J. Biol. Chem. 279 (2004) 34931-34937
    • (2004) J. Biol. Chem. , vol.279 , pp. 34931-34937
    • Randau, L.1
  • 102
    • 66049158949 scopus 로고    scopus 로고
    • A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA
    • Kowtoniuk W.E., Shen Y., Heemstra J.M., Agarwal I., and Liu D.R. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc. Natl. Acad. Sci. USA 106 (2009) 7768-7773
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 7768-7773
    • Kowtoniuk, W.E.1    Shen, Y.2    Heemstra, J.M.3    Agarwal, I.4    Liu, D.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.