메뉴 건너뛰기




Volumn 21, Issue 7, 2008, Pages 704-708

Multinomial mixture model with feature selection for text clustering

Author keywords

Feature selection; Multinomial mixture model; Text clustering; Text mining

Indexed keywords

FEATURE SELECTION; MULTINOMIAL MIXTURE MODEL; TEXT CLUSTERING; TEXT MINING;

EID: 50949099030     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.03.025     Document Type: Article
Times cited : (22)

References (22)
  • 2
    • 4344560363 scopus 로고    scopus 로고
    • P. Bradley, U. Fayyad, C. Reina, Clustering very large database using EM mixture models, in: Proc. 15th Intern. Conf. on Pattern Recognition (ICPR-2000), 2000, pp. 76-80.
    • P. Bradley, U. Fayyad, C. Reina, Clustering very large database using EM mixture models, in: Proc. 15th Intern. Conf. on Pattern Recognition (ICPR-2000), 2000, pp. 76-80.
  • 3
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A.K., Thrun S., and Mitchel T.M. Text classification from labeled and unlabeled documents using EM. Machine Learning 39 2/3 (2000) 103-134
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchel, T.M.4
  • 4
    • 50949098994 scopus 로고    scopus 로고
    • T. Hofmann, Probabilistic latent semantic analysis, in: Proc. Uncertainty in Artificial Intelligence (UAI'99), 1999, pp. 289-296.
    • T. Hofmann, Probabilistic latent semantic analysis, in: Proc. Uncertainty in Artificial Intelligence (UAI'99), 1999, pp. 289-296.
  • 7
    • 0036993117 scopus 로고    scopus 로고
    • X. Liu, Y. Gong, W. Xu, S. Zhu, Document clustering with cluster refinement and model selection capabilities, in: Proc. 25th Annual International ACM SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.
    • X. Liu, Y. Gong, W. Xu, S. Zhu, Document clustering with cluster refinement and model selection capabilities, in: Proc. 25th Annual International ACM SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.
  • 9
    • 50949127004 scopus 로고    scopus 로고
    • I. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning. Technical Report 2001-05, UT Austin CS Dept., 2001.
    • I. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning. Technical Report 2001-05, UT Austin CS Dept., 2001.
  • 10
    • 2442520183 scopus 로고    scopus 로고
    • W. Li, W. Ng, E. Lim, Spectral analysis of text collection for similarity-based clustering, in: 20th International Conf. on Data Engineering (ICDE'04), 2004, p. 833.
    • W. Li, W. Ng, E. Lim, Spectral analysis of text collection for similarity-based clustering, in: 20th International Conf. on Data Engineering (ICDE'04), 2004, p. 833.
  • 11
    • 50949107386 scopus 로고    scopus 로고
    • M. Dash, H. Liu, Feature selection for clustering, in: Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD-2000), 2000.
    • M. Dash, H. Liu, Feature selection for clustering, in: Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD-2000), 2000.
  • 13
    • 0034593107 scopus 로고    scopus 로고
    • Y. Kim, W. Street, F. Menczer, Feature selection for unsupervised learning via evolutionary search, in: Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2000, pp. 365-369.
    • Y. Kim, W. Street, F. Menczer, Feature selection for unsupervised learning via evolutionary search, in: Proc. Sixth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2000, pp. 365-369.
  • 14
    • 0010449495 scopus 로고    scopus 로고
    • Identifying splits with clear separation: a new class discovery method for gene expression data
    • Heydebreck A.v., Huber W., Poustka A., and Vingron M. Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics 17 (2001)
    • (2001) Bioinformatics , vol.17
    • Heydebreck, A.v.1    Huber, W.2    Poustka, A.3    Vingron, M.4
  • 15
    • 50949094253 scopus 로고    scopus 로고
    • J. Dy, C. Brodley, Feature subset selection and order identification for unsupervised learning, in: Proc. ICML'2000, 2000, pp. 247-254.
    • J. Dy, C. Brodley, Feature subset selection and order identification for unsupervised learning, in: Proc. ICML'2000, 2000, pp. 247-254.
  • 16
    • 4344610280 scopus 로고    scopus 로고
    • Generalized model selection for unsupervised learning in high dimensions
    • Solla S., Leen T., and Muller K. (Eds), MIT Press
    • Vaithyanathan S., and Dom B. Generalized model selection for unsupervised learning in high dimensions. In: Solla S., Leen T., and Muller K. (Eds). Proc. NIPS'12 (2000), MIT Press
    • (2000) Proc. NIPS'12
    • Vaithyanathan, S.1    Dom, B.2
  • 17
    • 50949090567 scopus 로고    scopus 로고
    • L. Rigouste, O. Cappe, F. Yvon, Evaluation of a probabilistic method for unsupervised text clustering, in: Applied Stochastic Models and Data Analysis (ASMDA 2005), 2005.
    • L. Rigouste, O. Cappe, F. Yvon, Evaluation of a probabilistic method for unsupervised text clustering, in: Applied Stochastic Models and Data Analysis (ASMDA 2005), 2005.
  • 19
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining partitions
    • Strehl A., and Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitions. Journal of Machine Learning Research 3 (2002) 583-617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 21
    • 50949123049 scopus 로고    scopus 로고
    • M.W. Graham, D.J. Miller, Unsupervised learning of parsimonious mixtures on large feature spaces, Penn State EE Dept. Technical Report, 2004.
    • M.W. Graham, D.J. Miller, Unsupervised learning of parsimonious mixtures on large feature spaces, Penn State EE Dept. Technical Report, 2004.
  • 22
    • 33947276673 scopus 로고    scopus 로고
    • Improving classification performance using unlabeled data: Naïve Bayesian case
    • Lee C. Improving classification performance using unlabeled data: Naïve Bayesian case. Knowledge-Based Systems 20 (2007) 220-224
    • (2007) Knowledge-Based Systems , vol.20 , pp. 220-224
    • Lee, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.