메뉴 건너뛰기




Volumn 18, Issue 2, 2008, Pages 137-150

A finite mixture model for image segmentation

Author keywords

Finite mixtures; Gibbs distribution; Image segmentation; Maximum likelihood; Mean Field approximation

Indexed keywords


EID: 41549139266     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-007-9044-9     Document Type: Article
Times cited : (28)

References (31)
  • 1
    • 1542427556 scopus 로고    scopus 로고
    • Inhomogeneous prior models for image reconstruction
    • Aykroyd, R.G., Zimeras, S.: Inhomogeneous prior models for image reconstruction. J. Am. Stat. Assoc. 94, 934-946 (1999)
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 934-946
    • Aykroyd, R.G.1    Zimeras, S.2
  • 2
    • 0000013152 scopus 로고
    • On statistical analysis of dirty pictures
    • 3
    • Besag, J.: On statistical analysis of dirty pictures. J. R. Stat. Soc. B 48(3), 259-302 (1986)
    • (1986) J. R. Stat. Soc. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 6
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • 1
    • Celeux, G., Forbes, F., Peyrard, N.: EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit. 36(1), 131-144 (2003)
    • (2003) Pattern Recognit. , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 7
    • 0034270235 scopus 로고    scopus 로고
    • Weight adaptation and oscillatory correlation for image segmentation
    • Chen, K., Wang, D., Liu, X.: Weight adaptation and oscillatory correlation for image segmentation. IEEE Trans. Neural Netw. 11, 1106-1123 (2000)
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 1106-1123
    • Chen, K.1    Wang, D.2    Liu, X.3
  • 9
    • 0036721824 scopus 로고    scopus 로고
    • K-means iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    • Clausi, D.A.: K-means iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognit. 35, 1959-1972 (2002)
    • (2002) Pattern Recognit. , vol.35 , pp. 1959-1972
    • Clausi, D.A.1
  • 10
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an em algorithm for image segmentation
    • 3
    • Diplaros, A., Vlassis, N., Gevers, T.: A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans. Neural Netw. 18(3), 798-808 (2007)
    • (2007) IEEE Trans. Neural Netw. , vol.18 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 11
    • 22444455305 scopus 로고    scopus 로고
    • Mean fields and two-dimensional Markov random fields in image analysis
    • Dunmur, A.P., Titterington, D.M.: Mean fields and two-dimensional Markov random fields in image analysis. Pattern Anal. Appl. 1, 248-260 (1998)
    • (1998) Pattern Anal. Appl. , vol.1 , pp. 248-260
    • Dunmur, A.P.1    Titterington, D.M.2
  • 12
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • 9
    • Forbes, F., Peyrard, N.: Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1089-1101 (2003)
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • 6
    • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721-741 (1984)
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 14
    • 0036970574 scopus 로고    scopus 로고
    • Hidden Markov models and disease mapping
    • 460
    • Green, P.J., Richardson, S.: Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97(460), 1-16 (2002)
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 1-16
    • Green, P.J.1    Richardson, S.2
  • 15
    • 0000008146 scopus 로고
    • Comparing partitions
    • 2
    • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 1(2), 193-218 (1985)
    • (1985) J. Classif. , vol.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 17
    • 85019968634 scopus 로고    scopus 로고
    • Segmentation of brain MR images with bias field correction
    • University of Queensland, Australia
    • Kim, S., McLachlan, G.J., Ng, S., Wang, D.: Segmentation of brain MR images with bias field correction. In: APRS Workshop on Digital Image Computing, University of Queensland, Australia (2003)
    • (2003) APRS Workshop on Digital Image Computing
    • Kim, S.1    McLachlan, G.J.2    Ng, S.3    Wang, D.4
  • 20
    • 2642550607 scopus 로고    scopus 로고
    • Speeding up the em algorithm for mixture model-based segmentation of magnetic resonance images
    • Ng, S., McLachlan, G.J.: Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images. Pattern Recognit. 37, 1573-1589 (2004)
    • (2004) Pattern Recognit. , vol.37 , pp. 1573-1589
    • Ng, S.1    McLachlan, G.J.2
  • 21
    • 0027658896 scopus 로고
    • A review of image segmentation techniques
    • Pal, N., Pal, S.: A review of image segmentation techniques. Pattern Recognit. 26, 1277-1294 (1993)
    • (1993) Pattern Recognit. , vol.26 , pp. 1277-1294
    • Pal, N.1    Pal, S.2
  • 22
    • 0026842556 scopus 로고
    • An adaptive clustering algorithm for image segmentation
    • 4
    • Pappas, T.N.: An adaptive clustering algorithm for image segmentation. IEEE Trans. Signal Process. 40(4), 901-914 (1992)
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 901-914
    • Pappas, T.N.1
  • 24
    • 0036857218 scopus 로고    scopus 로고
    • Approximate Bayes factors for image segmentation: The pseudo-likelihood information criterion (PLIC)
    • 11
    • Raftery, A.E.: Approximate Bayes factors for image segmentation: the pseudo-likelihood information criterion (PLIC). IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1517-1520 (2002)
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 1517-1520
    • Raftery, A.E.1
  • 26
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm
    • Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7, 1014-1028 (1998)
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 1014-1028
    • Sanjay-Gopal, S.1    Hebert, T.J.2
  • 27
    • 0017471706 scopus 로고
    • Clustering on coloured lattices
    • 1
    • Strauss, D.J.: Clustering on coloured lattices. J. Appl. Probab. 14(1), 135-143 (1977)
    • (1977) J. Appl. Probab. , vol.14 , pp. 135-143
    • Strauss, D.J.1
  • 28
    • 0017957882 scopus 로고
    • A survey of threshold selection techniques
    • Wezka, J.S.: A survey of threshold selection techniques. Comput. Vis. Graph. Image Process. 7, 259-265 (1978)
    • (1978) Comput. Vis. Graph. Image Process. , vol.7 , pp. 259-265
    • Wezka, J.S.1
  • 29
    • 0026938712 scopus 로고
    • The mean field theory in em procedure for Markov random fields
    • 10
    • Zhang, J.: The mean field theory in EM procedure for Markov random fields. IEEE Trans. Signal Process. 40(10), 2570-2583 (1992)
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 2570-2583
    • Zhang, J.1
  • 30
    • 0027308049 scopus 로고
    • The mean field theory in em procedure for blind Markov random field image restoration
    • 1
    • Zhang, J.: The mean field theory in EM procedure for blind Markov random field image restoration. IEEE Trans. Image Process. 2(1), 27-40 (1993)
    • (1993) IEEE Trans. Image Process. , vol.2 , pp. 27-40
    • Zhang, J.1
  • 31
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20 (2001)
    • (2001) IEEE Trans. Med. Imaging , vol.20
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.