메뉴 건너뛰기




Volumn 1178, Issue , 2009, Pages 276-284

Epigenetic regulation of mammalian genomes by transposable elements

Author keywords

Epigenetics; Gene regulation; Histone modifications; Human genome; Nucleosomes; Transposable elements

Indexed keywords

HISTONE;

EID: 70350455280     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2009.05007.x     Document Type: Conference Paper
Times cited : (34)

References (46)
  • 1
    • 33744463367 scopus 로고    scopus 로고
    • Evolutionary tinkering with transposable elements
    • Jordan, I.K. 2006. Evolutionary tinkering with transposable elements. Proc. Natl. Acad. Sci. USA 103: 7941-7942.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 7941-7942
    • Jordan, I.K.1
  • 2
    • 0030840954 scopus 로고    scopus 로고
    • Cytosine methylation and the ecology of intragenomic parasites
    • Yoder, J.A.,C.P.Walsh & T.H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335-340.
    • (1997) Trends Genet , vol.13 , pp. 335-340
    • Yoder, J.A.1    Walsh, C.P.2    Bestor, T.H.3
  • 3
    • 34249304470 scopus 로고    scopus 로고
    • Transcription and RNA interference in the formation of heterochromatin
    • Grewal, S.I. & S.C. Elgin. 2007. Transcription and RNA interference in the formation of heterochromatin. Nature 447: 399-406.
    • (2007) Nature , vol.447 , pp. 399-406
    • Grewal, S.I.1    Elgin, S.C.2
  • 4
    • 33845755946 scopus 로고    scopus 로고
    • Heterochromatin revisited
    • Grewal, S.I. & S. Jia. 2007. Heterochromatin revisited. Nat. Rev. 8: 35-46.
    • (2007) Nat. Rev. , vol.8 , pp. 35-46
    • Grewal, S.I.1    Jia., S.2
  • 5
    • 4644312235 scopus 로고    scopus 로고
    • The role of RNA interference in heterochromatic silencing
    • Lippman, Z. & R. Martienssen. 2004. The role of RNA interference in heterochromatic silencing. Nature 431: 364-370.
    • (2004) Nature , vol.431 , pp. 364-370
    • Lippman, Z.1    Martienssen., R.2
  • 6
    • 33947303168 scopus 로고    scopus 로고
    • Transposable elements and the epigenetic regulation of the genome
    • Slotkin, R.K. & R. Martienssen. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. 8: 272-285.
    • (2007) Nat. Rev. , vol.8 , pp. 272-285
    • Slotkin, R.K.1    Martienssen., R.2
  • 7
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: Provocative insights from epigenomics
    • Suzuki, M.M. & A. Bird. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. 9: 465-476.
    • (2008) Nat. Rev. , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird., A.2
  • 8
    • 44349158512 scopus 로고    scopus 로고
    • Epigenetic interactions between transposons and genes: Lessons from plants
    • Weil, C. & R. Martienssen. 2008. Epigenetic interactions between transposons and genes: Lessons from plants. Curr. Opin. Genet. Dev. 18: 188-192.
    • (2008) Curr. Opin. Genet. Dev. , vol.18 , pp. 188-192
    • Weil, C.1    Martienssen, R.2
  • 10
    • 3342927934 scopus 로고    scopus 로고
    • Role of transposable elements in heterochromatin and epigenetic control
    • Lippman, Z., A.V. Gendrel, M. Black, et al. 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471-476.
    • (2004) Nature , vol.430 , pp. 471-476
    • Lippman, Z.1    Gendrel, A.V.2    Black, M.3
  • 11
    • 0037072666 scopus 로고    scopus 로고
    • Dependence of heterochromatic histoneH3methylation patterns on the Arabidopsis gene DDM1
    • Gendrel, A.V., Z. Lippman, C. Yordan, et al. 2002. Dependence of heterochromatic histoneH3methylation patterns on the Arabidopsis gene DDM1. Science 297: 1871-1873.
    • (2002) Science , vol.297 , pp. 1871-1873
    • Gendrel, A.V.1    Lippman, Z.2    Yordan, C.3
  • 12
    • 0037072661 scopus 로고    scopus 로고
    • Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
    • Volpe, T.A., C. Kidner, I.M. Hall, et al. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833-1837.
    • (2002) Science , vol.297 , pp. 1833-1837
    • Volpe, T.A.1    Kidner, C.2    Hall, I.M.3
  • 13
    • 0042346386 scopus 로고    scopus 로고
    • Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells
    • Kondo, Y. & J.P. Issa. 2003. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J. Biol. Chem. 278: 27658-27662.
    • (2003) J. Biol. Chem. , vol.278 , pp. 27658-27662
    • Kondo, Y.1    Issa, J.P.2
  • 14
    • 15444372817 scopus 로고    scopus 로고
    • The profile of repeat-associated histone lysine methylation states in the mouse epigenome
    • Martens, J.H., R.J. O'Sullivan, U. Braunschweig, et al. 2005. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24: 800-812.
    • (2005) EMBO J , vol.24 , pp. 800-812
    • Martens, J.H.1    O'Sullivan, R.J.2    Braunschweig, U.3
  • 15
    • 34547624303 scopus 로고    scopus 로고
    • Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
    • Mikkelsen, T.S., M. Ku, D.B. Jaffe, et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553-560.
    • (2007) Nature , vol.448 , pp. 553-560
    • Mikkelsen, T.S.1    Ku, M.2    Jaffe, D.B.3
  • 17
    • 59949085939 scopus 로고    scopus 로고
    • H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
    • Pauler, F.M., M.A. Sloane, R. Huang, et al. 2009. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Research 19: 221-233.
    • (2009) Genome Research , vol.19 , pp. 221-233
    • Pauler, F.M.1    Sloane, M.A.2    Huang, R.3
  • 18
    • 41649088383 scopus 로고    scopus 로고
    • Regulation of mammalian gene expression by retroelements and non-coding tandem repeats
    • Tomilin, N.V. 2008. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 30: 338-348.
    • (2008) Bioessays , vol.30 , pp. 338-348
    • Tomilin, N.V.1
  • 19
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg, R.D. & Y. Lorch. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285-294.
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch., Y.2
  • 20
    • 33747500567 scopus 로고    scopus 로고
    • A genomic code for nucleosome positioning
    • Segal, E., Y. Fondufe-Mittendorf, L. Chen, et al. 2006. A genomic code for nucleosome positioning. Nature 442: 772-778.
    • (2006) Nature , vol.442 , pp. 772-778
    • Segal, E.1    Fondufe-Mittendorf, Y.2    Chen, L.3
  • 21
    • 0033119484 scopus 로고    scopus 로고
    • Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin
    • Dimitri, P. & N. Junakovic. 1999. Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15: 123-124.
    • (1999) Trends Genet , vol.15 , pp. 123-124
    • Dimitri, P.1    Junakovic., N.2
  • 22
    • 0033985560 scopus 로고    scopus 로고
    • Heterochromatin function in complex genomes
    • Henikoff, S. 2000. Heterochromatin function in complex genomes. Biochim. Biophys. Acta 1470: 1-8.
    • (2000) Biochim. Biophys. Acta , vol.1470 , pp. 1-8
    • Henikoff, S.1
  • 23
    • 0031201685 scopus 로고    scopus 로고
    • Exploring and explaining epigenetic effects
    • Henikoff, S. & M.A. Matzke. 1997. Exploring and explaining epigenetic effects. Trends Genet. 13: 293-295.
    • (1997) Trends Genet , vol.13 , pp. 293-295
    • Henikoff, S.1    Matzke, M.A.2
  • 24
    • 62549114851 scopus 로고    scopus 로고
    • Repetitive DNA, nucleosome binding and human gene expression
    • Huda, A., L. Marino-Ramirez, D. Landsman, et al. 2009. Repetitive DNA, nucleosome binding and human gene expression. Gene. 436: 12-22.
    • (2009) Gene. , vol.436 , pp. 12-22
    • Huda, A.1    Marino-Ramirez, L.2    Landsman, D.3
  • 25
    • 0037301560 scopus 로고    scopus 로고
    • Origin of a substantial fraction of human regulatory sequences from transposable elements
    • Jordan, I.K., I.B. Rogozin, G.V. Glazko, et al. 2003. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19: 68-72.
    • (2003) Trends Genet , vol.19 , pp. 68-72
    • Jordan, I.K.1    Rogozin, I.B.2    Glazko, G.V.3
  • 26
    • 23844538442 scopus 로고    scopus 로고
    • Transposable elements donate lineagespecific regulatory sequences to host genomes
    • Marino-Ramirez, L., K.C. Lewis, D. Landsman, et al. 2005. Transposable elements donate lineagespecific regulatory sequences to host genomes. Cytogenet. Genome Res. 110: 333-341.
    • (2005) Cytogenet. Genome Res. , vol.110 , pp. 333-341
    • Marino-Ramirez, L.1    Lewis, K.C.2    Landsman, D.3
  • 27
    • 39749145198 scopus 로고    scopus 로고
    • Dynamic regulation of nucleosome positioning in the human genome
    • Schones, D.E., K. Cui, S. Cuddapah, et al. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132: 887-898.
    • (2008) Cell , vol.132 , pp. 887-898
    • Schones, D.E.1    Cui, K.2    Cuddapah, S.3
  • 28
    • 55549117831 scopus 로고    scopus 로고
    • Evolution of the mammalian transcription factor binding repertoire via transposable elements
    • Bourque, G., B. Leong, V.B. Vega, et al. 2008. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18: 1752-1762.
    • (2008) Genome Res , vol.18 , pp. 1752-1762
    • Bourque, G.1    Leong, B.2    Vega, V.B.3
  • 29
    • 44449084835 scopus 로고    scopus 로고
    • Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA
    • Polavarapu, N., L. Marino-Ramirez, D. Landsman, et al. 2008. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9: 226.
    • (2008) BMC Genomics , vol.9 , pp. 226
    • Polavarapu, N.1    Marino-Ramirez, L.2    Landsman, D.3
  • 30
    • 36749061982 scopus 로고    scopus 로고
    • Speciesspecific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53
    • Wang, T., J. Zeng, C.B. Lowe, et al. 2007. Speciesspecific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA 104: 18613-18618.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 18613-18618
    • Wang, T.1    Zeng, J.2    Lowe, C.B.3
  • 31
    • 38549133553 scopus 로고    scopus 로고
    • Human cis natural antisense transcripts initiated by transposable elements
    • Conley, A.B., W.J. Miller & I.K. Jordan. 2008. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet. 24: 53-56.
    • (2008) Trends Genet , vol.24 , pp. 53-56
    • Conley, A.B.1    Miller, W.J.2    Jordan, I.K.3
  • 33
    • 32444436122 scopus 로고    scopus 로고
    • Transcription of two human genes from a bidirectional endogenous retrovirus promoter
    • Dunn, C.A., M.T. Romanish, L.E. Gutierrez, et al. 2006. Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366: 335-342.
    • (2006) Gene , vol.366 , pp. 335-342
    • Dunn, C.A.1    Romanish, M.T.2    Gutierrez, L.E.3
  • 34
    • 0141561907 scopus 로고    scopus 로고
    • Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions
    • van de Lagemaat, L.N., J.R. Landry, D.L. Mager, et al. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19: 530-536.
    • (2003) Trends Genet , vol.19 , pp. 530-536
    • Van De Lagemaat, L.N.1    Landry, J.R.2    Mager, D.L.3
  • 35
    • 48249153426 scopus 로고    scopus 로고
    • The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome
    • Fu, Y., M. Sinha, C.L. Peterson, et al. 2008. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4: e1000138.
    • (2008) PLoS Genet , vol.4
    • Fu, Y.1    Sinha, M.2    Peterson, C.L.3
  • 36
    • 46249112085 scopus 로고    scopus 로고
    • Combinatorial patterns of histone acetylations and methylations in the human genome
    • Wang, Z., C. Zang, J.A. Rosenfeld, et al. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Gen. 40: 897-903.
    • (2008) Nat. Gen. , vol.40 , pp. 897-903
    • Wang, Z.1    Zang, C.2    Rosenfeld, J.A.3
  • 37
    • 11144358198 scopus 로고    scopus 로고
    • A gene atlas of the mouse and human protein-encoding transcriptomes
    • Su, A.I., T. Wiltshire, S. Batalov, et al. 2004. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101: 6062-6067.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6062-6067
    • Su, A.I.1    Wiltshire, T.2    Batalov, S.3
  • 38
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander, E.S., L.M. Linton, B. Birren, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1    Linton, L.M.2    Birren, B.3
  • 39
    • 33846937260 scopus 로고    scopus 로고
    • Repetitive sequence environment distinguishes housekeeping genes
    • Eller, C.D., M. Regelson, B. Merriman, et al. 2007. Repetitive sequence environment distinguishes housekeeping genes. Gene 390: 153-165.
    • (2007) Gene , vol.390 , pp. 153-165
    • Eller, C.D.1    Regelson, M.2    Merriman, B.3
  • 40
    • 25444499171 scopus 로고    scopus 로고
    • Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes
    • Ganapathi, M., P. Srivastava, S.K. Das Sutar, et al. 2005. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinformatics 6: 126.
    • (2005) BMC Bioinformatics , vol.6 , pp. 126
    • Ganapathi, M.1    Srivastava, P.2    Sutar Das, S.K.3
  • 41
    • 2442667886 scopus 로고    scopus 로고
    • Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes
    • Han, J.S., S.T. Szak & J.D. Boeke. 2004. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268-274.
    • (2004) Nature , vol.429 , pp. 268-274
    • Han, J.S.1    Szak, S.T.2    Boeke, J.D.3
  • 42
    • 12144253150 scopus 로고    scopus 로고
    • Alu and L1 retroelements are correlated with the tissue extent and peak rate of gene expression, respectively
    • Kim, T.M., Y.C. Jung & M.G. Rhyu. 2004. Alu and L1 retroelements are correlated with the tissue extent and peak rate of gene expression, respectively. J. Korean Med. Sci. 19: 783-792.
    • (2004) J. Korean Med. Sci. , vol.19 , pp. 783-792
    • Kim, T.M.1    Jung, Y.C.2    Rhyu, M.G.3
  • 43
    • 0023946286 scopus 로고
    • Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands
    • Korenberg, J.R. & M.C. Rykowski. 1988. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391-400.
    • (1988) Cell , vol.53 , pp. 391-400
    • Korenberg, J.R.1    Rykowski, M.C.2
  • 44
    • 0026738877 scopus 로고
    • DNA positionspecific repression of transcription by a Drosophila zinc finger protein
    • Geyer, P.K. & V.G. Corces. 1992. DNA positionspecific repression of transcription by a Drosophila zinc finger protein. Genes Dev. 6: 1865-1873.
    • (1992) Genes Dev , vol.6 , pp. 1865-1873
    • Geyer, P.K.1    Corces, V.G.2
  • 45
    • 0035451090 scopus 로고    scopus 로고
    • CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease
    • Ohlsson, R., R. Renkawitz & V. Lobanenkov. 2001. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17: 520-527.
    • (2001) Trends Genet , vol.17 , pp. 520-527
    • Ohlsson, R.1    Renkawitz, R.2    Lobanenkov., V.3
  • 46
    • 34249026300 scopus 로고    scopus 로고
    • Highresolution profiling of histone methylations in the human genome
    • Barski, A., S. Cuddapah, K. Cui, et al. 2007. Highresolution profiling of histone methylations in the human genome. Cell 129: 823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1    Cuddapah, S.2    Cui, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.