메뉴 건너뛰기




Volumn 8, Issue 3, 2009, Pages 491-513

Pattern recognition of longitudinal trial data with nonignorable missingness:

Author keywords

Fuzzy clustering; Growth pattern recognition; Intermittent missing; Nonmissing at random; Parallel mixture model

Indexed keywords


EID: 70350267860     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622009003508     Document Type: Article
Times cited : (21)

References (92)
  • 1
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: A cautionary tale
    • P. D. Allison, Multiple imputation for missing data: A cautionary tale, Sociol. Methods Res. 28(3) (2000) 301-309.
    • (2000) Sociol. Methods Res. , vol.28 , Issue.3 , pp. 301-309
    • Allison, P.D.1
  • 2
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
    • T.W. Anderson, Maximum likelihood estimates for a multivariate normal distribution when some observations are missing, J. Am. Stat. Assoc. 52(278) (1957) 200-203.
    • (1957) J. Am. Stat. Assoc. , vol.52 , Issue.278 , pp. 200-203
    • Anderson, T.W.1
  • 4
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and categorical data with missing values
    • R. J. A. Little and M. D. Schluchter, Maximum likelihood estimation for mixed continuous and categorical data with missing values, Biometrika 72(3) (1985) 497-512.
    • (1985) Biometrika , vol.72 , Issue.3 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.D.2
  • 7
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • X.-L. Meng and D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika 80(2) (1993) 267-278.
    • (1993) Biometrika , vol.80 , Issue.2 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 8
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • J. L. Schafer, Multiple imputation: A primer, Stat. Methods Med. Res. 8(1) (1999) 3-15.
    • (1999) Stat. Methods Med. Res. , vol.8 , Issue.1 , pp. 3-15
    • Schafer, J.L.1
  • 9
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • P. Diggle and M. G. Kenward, Informative drop-out in longitudinal data analysis, Appl. Stat. 43(1) (1994) 49-93.
    • (1994) Appl. Stat. , vol.43 , Issue.1 , pp. 49-93
    • Diggle, P.1    Kenward, M.G.2
  • 10
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • R. J. A. Little, Modeling the drop-out mechanism in repeated-measures studies, J. Am. Stat. Assoc. 90(431) (1995) 1112-1121.
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.J.A.1
  • 11
    • 0017133178 scopus 로고
    • Inference and missing data
    • D. B. Rubin, Inference and missing data, Biometrika 63(3) (1976) 581-592.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 12
    • 27744463539 scopus 로고    scopus 로고
    • Missing covariates in longitudinal data with informative dropouts: Bias analysis and inference
    • J. Roy and X. Lin, Missing covariates in longitudinal data with informative dropouts: Bias analysis and inference, Biometrics 61(3) (2005) 837-846.
    • (2005) Biometrics , vol.61 , Issue.3 , pp. 837-846
    • Roy, J.1    Lin, X.2
  • 13
    • 84947396376 scopus 로고
    • A generalization of sampling without replacement from a finite universe
    • D. G. Horvitz and D. J. Thompson, A generalization of sampling without replacement from a finite universe, J. Am. Stat. Assoc. 47(260) (1952) 663-685.
    • (1952) J. Am. Stat. Assoc. , vol.47 , Issue.260 , pp. 663-685
    • Horvitz, D.G.1    Thompson, D.J.2
  • 15
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • P. R. Rosenbaum and D. B. Rubin, The central role of the propensity score in observational studies for causal Effects, Biometrika 70(1) (1983) 41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 16
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • P. R. Rosenbaum and D. B. Rubin, Constructing a control group using multivariate matched sampling methods that incorporate the propensity score, Am. Stat. 39(1) (1985) 33-38.
    • (1985) Am. Stat. , vol.39 , Issue.1 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 17
    • 0442278074 scopus 로고    scopus 로고
    • A weighted estimating equation for missing covariate data with properties similar to maximum likelihood
    • S. R. Lipsitz, J. G. Ibrahim and L. P. Zhao, A weighted estimating equation for missing covariate data with properties similar to maximum likelihood, J. Am. Stat. Assoc. 94(448) (1999) 1147-1160.
    • (1999) J. Am. Stat. Assoc. , vol.94 , Issue.448 , pp. 1147-1160
    • Lipsitz, S.R.1    Ibrahim, J.G.2    Zhao, L.P.3
  • 18
    • 0027179643 scopus 로고
    • A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements
    • T. Park, A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements, Stat. Med. 12(18) (1993) 1723-1732.
    • (1993) Stat. Med. , vol.12 , Issue.18 , pp. 1723-1732
    • Park, T.1
  • 19
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • J. M. Robins, A. Rotnitzky and L. P. Zhao, Analysis of semiparametric regression models for repeated outcomes in the presence of missing data, J. Am. Stat. Assoc. 90(429) (1995) 106-121.
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.429 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 20
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • S. L. Zeger, K.-Y. Liang and P. S. Albert, Models for longitudinal data: A generalized estimating equation approach, Biometrics 44(4) (1988) 1049-1060.
    • (1988) Biometrics , vol.44 , Issue.4 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.-Y.2    Albert, P.S.3
  • 21
    • 0026581492 scopus 로고
    • Designs and analysis of two-stage studies
    • L. P. Zhao and S. Lipsitz, Designs and analysis of two-stage studies, Stat. Med. 11(6) (1992) 769-782.
    • (1992) Stat. Med. , vol.11 , Issue.6 , pp. 769-782
    • Zhao, L.P.1    Lipsitz, S.2
  • 22
    • 0000828942 scopus 로고
    • Missing observations in multivariate statistics: I. Review of the literature
    • A. A. AFIFI and R. M. Elasho., Missing observations in multivariate statistics: I. Review of the literature, J. Am. Stat. Assoc. 61(315) (1966) 595-604.
    • (1966) J. Am. Stat. Assoc. , vol.61 , Issue.315 , pp. 595-604
    • Afifi, A.A.1    Elasho., R.M.2
  • 23
    • 0001342385 scopus 로고
    • A method of estimation of missing values in multivariate data suitable for use with an electronic computer
    • S. F. Buck, A method of estimation of missing values in multivariate data suitable for use with an electronic computer, J. Royal Stat. Soc. Series B (Methodological) 22(2) (1960) 302-306.
    • (1960) J. Royal Stat. Soc. Series B (Methodological) , vol.22 , Issue.2 , pp. 302-306
    • Buck, S.F.1
  • 24
    • 0345948567 scopus 로고    scopus 로고
    • Large-scale imputation for complex surveys
    • eds. R. M. Groves, D. A. Dillman, J. L. Eltinge and R. J. A. Little Wiley, New York
    • D. A. Marker, D. R. Judkins and M. Winglee, Large-scale imputation for complex surveys, in Survey Nonresponse, eds. R. M. Groves, D. A. Dillman, J. L. Eltinge and R. J. A. Little (Wiley, New York, 2002).
    • (2002) Survey Nonresponse
    • Marker, D.A.1    Judkins, D.R.2    Winglee, M.3
  • 25
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrapm
    • B. Efron, Missing data, imputation, and the bootstrapm, J. Am. Stat. Assoc. 89(426) (1994) 463-475.
    • (1994) J. Am. Stat. Assoc. , vol.89 , Issue.426 , pp. 463-475
    • Efron, B.1
  • 26
    • 0030557655 scopus 로고    scopus 로고
    • Alternative paradigms for the analysis of imputed survey data
    • R. E. Fay, Alternative paradigms for the analysis of imputed survey data, J. Am. Stat. Assoc. 91(434) (1996) 490-498.
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 490-498
    • Fay, R.E.1
  • 27
    • 0000974584 scopus 로고
    • Jackknife variance estimation with survey data under hot deck imputation
    • J. N. K. Rao and J. Shao, Jackknife variance estimation with survey data under hot deck imputation, Biometrika 79(4) (1992) 811-822.
    • (1992) Biometrika , vol.79 , Issue.4 , pp. 811-822
    • Rao, J.N.K.1    Shao, J.2
  • 28
    • 0032371445 scopus 로고    scopus 로고
    • Balanced repeated replication for stratified multistage survey data under imputation
    • J. Shao, Y. Chen and Y. Chen, Balanced repeated replication for stratified multistage survey data under imputation, J. Am. Stat. Assoc. 93(442) (1998) 819-831.
    • (1998) J. Am. Stat. Assoc. , vol.93 , Issue.442 , pp. 819-831
    • Shao, J.1    Chen, Y.2    Chen, Y.3
  • 29
    • 21144481276 scopus 로고
    • Multiple imputation in mixture models for nonignorable nonresponse with follow-ups
    • R. J. Glynn, N. M. Laird and D. B. Rubin, Multiple imputation in mixture models for nonignorable nonresponse with follow-ups, J. Am. Stat. Assoc. 88(423) (1993) 984-993.
    • (1993) J. Am. Stat. Assoc. , vol.88 , Issue.423 , pp. 984-993
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 31
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • D. B. Rubin, Multiple imputation after 18+ years, J. Am. Stat. Assoc. 91(434) (1996) 473-489.
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 473-489
    • Rubin, D.B.1
  • 32
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • D. B. Rubin and N. Schenker, Multiple imputation for interval estimation from simple random samples with ignorable nonresponse, J. Am. Stat. Assoc. 81(394) (1986) 366-374.
    • (1986) J. Am. Stat. Assoc. , vol.81 , Issue.394 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 33
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • L. M. Collins, J. L. Schafer and C.-M. Kam, A comparison of inclusive and restrictive strategies in modern missing data procedures, Psychol. Methods 6(4) (2001) 330-351.
    • (2001) Psychol. Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 34
    • 0242493761 scopus 로고    scopus 로고
    • On the use of conceptual reconstruction for mining massively incomplete data sets
    • S. Parthasarathy and C. C. Aggarwal, On the use of conceptual reconstruction for mining massively incomplete data sets, Knowledge Data Eng. IEEE Trans. 15(6) (2003) 1512-1521.
    • (2003) Knowledge Data Eng. IEEE Trans. , vol.15 , Issue.6 , pp. 1512-1521
    • Parthasarathy, S.1    Aggarwal, C.C.2
  • 35
    • 0242544037 scopus 로고    scopus 로고
    • A pre-processing method to deal with missing values by integrating clustering and regression techniques
    • S.-M. Tseng, K.-H.Wang and C.-I. Lee, A pre-processing method to deal with missing values by integrating clustering and regression techniques, Appl. Artif. Intell. 17(5/6) (2003) 535.
    • (2003) Appl. Artif. Intell. , vol.17 , Issue.5-6 , pp. 535
    • Tseng, S.-M.1    Lee, C.-I.2
  • 36
    • 30344485118 scopus 로고    scopus 로고
    • Missing is useful: Missing values in costsensitive decision trees
    • S. Zhang, Z. Qin, C. X. Ling and S. Sheng, Missing is useful: Missing values in costsensitive decision trees, IEEE Trans. Knowledge Data Eng. 17(12) (2005) 1689-1693.
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.12 , pp. 1689-1693
    • Zhang, S.1    Qin, Z.2    Ling, C.X.3    Sheng, S.4
  • 37
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • R. J. A. Little, Pattern-mixture models for multivariate incomplete data, J. Am. Stat. Assoc. 88(421) (1993) 125-134.
    • (1993) J. Am. Stat. Assoc. , vol.88 , Issue.421 , pp. 125-134
    • Little, R.J.A.1
  • 38
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • R. J. A. Little, A class of pattern-mixture models for normal incomplete data, Biometrika 81(3) (1994) 471-483.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 471-483
    • Little, R.J.A.1
  • 39
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • R. J. A. Little and Y.Wang, Pattern-mixture models for multivariate incomplete data with covariates, Biometrics 52(1) (1996) 98-111.
    • (1996) Biometrics , vol.52 , Issue.1 , pp. 98-111
    • Little, R.J.A.1
  • 40
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J. L. Schafer and J. W. Graham, Missing data: Our view of the state of the art, Psychol. Methods 7(2) (2002) 147-177.
    • (2002) Psychol. Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 42
    • 21844519951 scopus 로고
    • Modeling incomplete longitudinal substance use data using latent variable growth curve methodology
    • S. C. Duncan and T. E. Duncan, Modeling incomplete longitudinal substance use data using latent variable growth curve methodology, Multivariate Behav. Res. 29(4) (1994) 313-338.
    • (1994) Multivariate Behav. Res. , vol.29 , Issue.4 , pp. 313-338
    • Duncan, S.C.1    Duncan, T.E.2
  • 43
    • 0002105479 scopus 로고    scopus 로고
    • Application of randon-effects pattern-mixture models for missing data in longitudinal studies
    • D. Hedeker and R. D. Gibbons, Application of randon-Effects pattern-mixture models for missing data in longitudinal studies, Psychol. Methods 2(1) (1997) 64-78.
    • (1997) Psychol. Methods , vol.2 , Issue.1 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 44
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • B. Muth́en, D. Kaplan and M. Hollis, On structural equation modeling with data that are not missing completely at random, Psychometrika 52(3) (1987) 431-462.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 431-462
    • Muth́en, B.1    Kaplan, D.2    Hollis, M.3
  • 45
    • 0004282518 scopus 로고    scopus 로고
    • SAS Institute Inc. Cary, NC, SAS Institute Inc
    • SAS Institute Inc., SAS/STAT User's Guide, Version 9.1 (Cary, NC, SAS Institute Inc, 2003).
    • (2003) SAS/STAT User's Guide, Version 9.1
  • 47
    • 0002031816 scopus 로고    scopus 로고
    • Latent variable mixture modeling
    • eds. G. A. Marcoulides and R. E. Schumacker Mahwah, NJ: Lawrence Erlbaum Associates
    • B. Muth́en, Latent variable mixture modeling, in New Developments and Techniques in Structural Equation Modeling, eds. G. A. Marcoulides and R. E. Schumacker (Mahwah, NJ: Lawrence Erlbaum Associates, 2001a), pp. 1-33.
    • (2001) New Developments and Techniques in Structural Equation Modeling , pp. 1-33
    • Muth́en, B.1
  • 48
    • 0002569771 scopus 로고    scopus 로고
    • Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling
    • eds. L. Collins and A. Sayer Washington: APA
    • B. Muth́en, Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling, in New Methods for the Analysis of Change, eds. L. Collins and A. Sayer (Washington: APA, 2001b), pp. 291-322.
    • (2001) New Methods for the Analysis of Change , pp. 291-322
    • Muth́en, B.1
  • 50
    • 0036400704 scopus 로고    scopus 로고
    • Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data
    • C. K. Enders, Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data, Multivariate Behav. Res. 37 (2002) 359-377.
    • (2002) Multivariate Behav. Res. , vol.37 , pp. 359-377
    • Enders, C.K.1
  • 52
    • 0016046280 scopus 로고
    • Some recent investigations of a new fuzzy partition algorithm and its application to pattern Classification problems
    • J. C. Dunn, Some recent investigations of a new fuzzy partition algorithm and its application to pattern Classification problems, J. Cybern. 4 (1974) 1-15.
    • (1974) J. Cybern. , vol.4 , pp. 1-15
    • Dunn, J.C.1
  • 53
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using Lp norm distances
    • R. J. Hathaway, J. C. Bezdek and Y. Hu, Generalized fuzzy c-means clustering strategies using Lp norm distances, IEEE Trans. Fuzzy Syst. 8(5) (2000) 576-582.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.J.1    Bezdek, J.C.2    Hu, Y.3
  • 55
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • M. N. Ahmed, S. M. Yamany, N. Mohamed and A. A. Farag, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imag. 21(3) (2002) 193-199.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.3 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4
  • 56
    • 0037410688 scopus 로고    scopus 로고
    • Suppressed fuzzy c-means clustering algorithm
    • J. Fan, W. Zhen and W. Xie, Suppressed fuzzy c-means clustering algorithm, Patt. Recognit. Lett. 24(9-10) (2003) 1607-1612.
    • (2003) Patt. Recognit. Lett. , vol.24 , Issue.9-10 , pp. 1607-1612
    • Fan, J.1    Zhen, W.2    Xie, W.3
  • 57
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c-means clustering based on featureweight learning
    • X.Wang, Y.Wang and L.Wang, Improving fuzzy c-means clustering based on featureweight learning, Patt. Recognit. Lett. 25(10) (2004) 1123-1132.
    • (2004) Patt. Recognit. Lett. , vol.25 , Issue.10 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3
  • 58
    • 27344448931 scopus 로고    scopus 로고
    • Analytically tractable case of fuzzy c-means clustering
    • O. S. Pianykh, Analytically tractable case of fuzzy c-means clustering, Patt. Recognit. 39(1) (2005) 35-46.
    • (2005) Patt. Recognit. , vol.39 , Issue.1 , pp. 35-46
    • Pianykh, O.S.1
  • 59
    • 33646361042 scopus 로고    scopus 로고
    • Fuzzy logic in medicine and bioinformatics
    • A. Torres and J. J. Nieto, Fuzzy logic in medicine and bioinformatics, J. Biomed. Biotechnol. 6 (2006) 1-7.
    • (2006) J. Biomed. Biotechnol. , vol.6 , pp. 1-7
    • Torres, A.1    Nieto, J.J.2
  • 60
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
    • W. Cai, S. Chen and D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Patt. Recognit. 40(3) (2007) 825-838.
    • (2007) Patt. Recognit. , vol.40 , Issue.3 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 62
    • 33845688063 scopus 로고    scopus 로고
    • Visualization of fuzzy clusters by fuzzy Sammon mapping projection: Application to the analysis of phase space trajectories
    • B. Feil, B. Balasko and J. Abonyi, Visualization of fuzzy clusters by fuzzy Sammon mapping projection: application to the analysis of phase space trajectories, Soft Computing 11(5) (2002) 479-488.
    • (2002) Soft Computing , vol.11 , Issue.5 , pp. 479-488
    • Feil, B.1    Balasko, B.2    Abonyi, J.3
  • 63
    • 0032117738 scopus 로고    scopus 로고
    • Threshold selection based on fuzzy c-partition entropy approach
    • H. D. Cheng, J.-R. Chen and J. Li, Threshold selection based on fuzzy c-partition entropy approach, Patt. Recognit. 31(7) (1998) 857-870.
    • (1998) Patt. Recognit. , vol.31 , Issue.7 , pp. 857-870
    • Cheng, H.D.1    Chen, J.-R.2    Li, J.3
  • 64
    • 0032690272 scopus 로고    scopus 로고
    • A novel fuzzy entropy approach to image enhancement and thresholding
    • H. D. Cheng, Y.-H. Chen and Y. Sun, A novel fuzzy entropy approach to image enhancement and thresholding, Signal Process. 75(3) (1999) 277-301.
    • (1999) Signal Process , vol.75 , Issue.3 , pp. 277-301
    • Cheng, H.D.1    Chen, Y.-H.2    Sun, Y.3
  • 67
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • ed. D. Kaplan Newbury Park, CA, Sage
    • B. Muth́en, Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data, in Handbook of Quantitative Methodology for the Social Sciences, ed. D. Kaplan (Newbury Park, CA, Sage, 2004), pp. 345-368.
    • (2004) Handbook of Quantitative Methodology for the Social Sciences , pp. 345-368
    • Muth́en, B.1
  • 69
    • 36849039953 scopus 로고    scopus 로고
    • Neurobehaviroal consequences of prenatal exposure to smoking at 6 to 8 months of age
    • M. Willoughby, M. Greenberg, C. Blair and C. Stifer, Neurobehaviroal consequences of prenatal exposure to smoking at 6 to 8 months of age, Infancy 12(3) (2007) 273-301.
    • (2007) Infancy , vol.12 , Issue.3 , pp. 273-301
    • Willoughby, M.1    Greenberg, M.2    Blair, C.3    Stifer, C.4
  • 70
    • 33746369118 scopus 로고    scopus 로고
    • Elucidating early mechanisms of developmental psychopathology: The case of prenatal smoking and disruptive behavior
    • L. S. Wakschlag, B. L. Leventhal and D. S. Pine, Elucidating early mechanisms of developmental psychopathology: The case of prenatal smoking and disruptive behavior, Child Dev. 77(4) (2006) 893-906.
    • (2006) Child Dev. , vol.77 , Issue.4 , pp. 893-906
    • Wakschlag, L.S.1    Leventhal, B.L.2    Pine, D.S.3
  • 71
    • 34547266511 scopus 로고    scopus 로고
    • Comparison study of two kernel-based learning algorithms for predicting the distance range between antibody interface residues and antigen surface
    • Y. Shi, J. Wan, X. Zhang, G. Kou, Y. Peng, Z. Cao and Y. Guo, Comparison study of two kernel-based learning algorithms for predicting the distance range between antibody interface residues and antigen surface, Int. J. Comput. Math. 84(5) (2006) 697-707.
    • (2006) Int. J. Comput. Math. , vol.84 , Issue.5 , pp. 697-707
    • Shi, Y.1    Wan, J.2    Zhang, X.3    Kou, G.4    Peng, Y.5    Cao, Z.6    Guo, Y.7
  • 73
    • 58149235001 scopus 로고    scopus 로고
    • Descriptive framework for the field of data mining and knowledge discovery
    • Y. Peng, G. Kou, Y. Shi and Z. Chen, Descriptive framework for the field of data mining and knowledge discovery, Int. J. Inform. Technol. Decision Making 7(4) (2008) 639-682.
    • (2008) Int. J. Inform. Technol. Decision Making , vol.7 , Issue.4 , pp. 639-682
    • Peng, Y.1    Kou, G.2    Shi, Y.3    Chen, Z.4
  • 74
  • 75
    • 33947629848 scopus 로고    scopus 로고
    • Comparision of interestingness measures for web usage mining: An empirical study
    • X. Huang, Comparision of interestingness measures for web usage mining: An empirical study, Int. J. Inform. Technol. Decision Making 6(1) (2006) 15-41.
    • (2006) Int. J. Inform. Technol. Decision Making , vol.6 , Issue.1 , pp. 15-41
    • Huang, X.1
  • 76
    • 33746227593 scopus 로고    scopus 로고
    • YinYang bipolar fuzzy sets and fuzzy equlibrium relations: For clustering, optimization, and global regulation
    • W. Zhang, YinYang bipolar fuzzy sets and fuzzy equlibrium relations: For clustering, optimization, and global regulation, Int. J. Inform. Technol. Decision Making 5(1) (2006) 19-46.
    • (2006) Int. J. Inform. Technol. Decision Making , vol.5 , Issue.1 , pp. 19-46
    • Zhang, W.1
  • 77
    • 33845509683 scopus 로고    scopus 로고
    • Impending brain informatics research from Web intelligence perspective
    • DOI 10.1142/S0219622006002283, PII S0219622006002283
    • N. Zhong, Impending brain informatics research from web intelligence perspective, Int. J. Inform. Technol. Decision Making 5(4) (2006) 713-727. (Pubitemid 44917246)
    • (2006) International Journal of Information Technology and Decision Making , vol.5 , Issue.4 , pp. 713-727
    • Zhong, N.1
  • 78
    • 0012234547 scopus 로고    scopus 로고
    • Artificial immune systems: A novel paradigm to pattern recognition
    • eds. J. M. Corchado, L. Alonso and C. Fyfe University of Paisley, UK
    • L. N. de Castro and J. Timmis, Artificial immune systems: A novel paradigm to pattern recognition, in Artificial Neural Networks in Pattern Recognition, eds. J. M. Corchado, L. Alonso and C. Fyfe (University of Paisley, UK, 2002), pp. 67-84.
    • (2002) Artificial Neural Networks in Pattern Recognition , pp. 67-84
    • De Castro, L.N.1    Timmis, J.2
  • 79
    • 25444472164 scopus 로고    scopus 로고
    • Adolescent substance use outcomes in the raising healthy children project: A twopart latent growth curve analysis
    • E. C. Brown, R. F. Catalano, C. B. Fleming, K. P. Haggerty and R. D. Abbott, Adolescent substance use outcomes in the raising healthy children project: A twopart latent growth curve analysis, J. Consult. Clin. Psychol. 73(4) (2005) 699-710.
    • (2005) J. Consult. Clin. Psychol. , vol.73 , Issue.4 , pp. 699-710
    • Brown, E.C.1    Catalano, R.F.2    Fleming, C.B.3    Haggerty, K.P.4    Abbott, R.D.5
  • 80
    • 34247524473 scopus 로고    scopus 로고
    • Growth curve models for zero-in.ated count data: An application to smoking behavior
    • L. Hui and D. A. Powers, Growth curve models for zero-in.ated count data: An application to smoking behavior, Struct. Equat. Model. 14(2) (2007) 247-279.
    • (2007) Struct. Equat. Model. , vol.14 , Issue.2 , pp. 247-279
    • Hui, L.1    Powers, D.A.2
  • 81
    • 0022966316 scopus 로고
    • Unbalanced repeated-measures models with structured covariance matrices
    • R. I. Jennrich and M. D. Schluchter, Unbalanced repeated-measures models with structured covariance matrices, Biometrics 42(4) (1986) 805-820.
    • (1986) Biometrics , vol.42 , Issue.4 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 83
    • 0013297364 scopus 로고    scopus 로고
    • Beyond SEM: General latent variable modeling
    • B. Muth́en, Beyond SEM: General latent variable modeling, Behaviormetrika 29 (2002) 81-117.
    • (2002) Behaviormetrika , vol.29 , pp. 81-117
    • Muth́en, B.1
  • 84
    • 0009852669 scopus 로고    scopus 로고
    • General growth mixture modeling for randomized preventive interventions
    • B. Muth́en, C. H. Brown, K. Masyn, B. Jo, S.-T. Khoo, C.-C. Yang et al., General growth mixture modeling for randomized preventive interventions, Biostatistics 3(4) (2002) 459-475.
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 459-475
    • Muth́en, B.1    Brown, C.H.2    Masyn, K.3    Jo, B.4    Khoo, S.-T.5    Yang, C.-C.6
  • 87
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: A semiparametric, group-based approach
    • D. S. Nagin, Analyzing developmental trajectories: A semiparametric, group-based approach, Psychol. Methods 4 (1999) 139-157.
    • (1999) Psychol. Methods , vol.4 , pp. 139-157
    • Nagin, D.S.1
  • 88
    • 1542678316 scopus 로고    scopus 로고
    • A two-part random-effects model for semicontinuous longitudinal data
    • M. K. Olsen and J. L. Schafer, A two-part random-Effects model for semicontinuous longitudinal data, J. Am. Stat. Assoc. 96(454) (2001) 730-745.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.454 , pp. 730-745
    • Olsen, M.K.1    Schafer, J.L.2
  • 89
    • 84940952808 scopus 로고
    • Statistical matching using file concatenation with adjusted weights and multiple imputations
    • D. B. Rubin, Statistical matching using file concatenation with adjusted weights and multiple imputations, J. Bus. Econ. Stat. 4(1) (1986) 87-94.
    • (1986) J. Bus. Econ. Stat. , vol.4 , Issue.1 , pp. 87-94
    • Rubin, D.B.1
  • 91
    • 0442278083 scopus 로고    scopus 로고
    • Inference with imputed conditional means
    • J. L. Schafer and N. Schenker, Inference with imputed conditional means, J. Am. Stat. Assoc. 95(449) (2000) 144-154.
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.449 , pp. 144-154
    • Schafer, J.L.1    Schenker, N.2
  • 92
    • 0022849562 scopus 로고
    • Implications of sex differences in neonatal temperament for early risk and developmental/environmental interactions
    • M. Riese, Implications of sex differences in neonatal temperament for early risk and developmental/environmental interactions, Journal of Genetic Psychology 147 (1986) 507-513.
    • (1986) Journal of Genetic Psychology , vol.147 , pp. 507-513
    • Riese, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.