메뉴 건너뛰기




Volumn 6, Issue 1, 2007, Pages 15-41

Comparison of interestingness measures for Web usage mining: An empirical study

Author keywords

Association rule mining; Interestingness measures; Sequential pattern mining; Web log mining

Indexed keywords


EID: 33947629848     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622007002368     Document Type: Article
Times cited : (22)

References (42)
  • 4
    • 0035414899 scopus 로고    scopus 로고
    • Rule quality measures for rule induction systems: Description and evaluation
    • A. An and N. Cereone, Rule quality measures for rule induction systems: Description and evaluation, Computational Intelligence 17(3) (2001).
    • (2001) Computational Intelligence , vol.17 , Issue.3
    • An, A.1    Cereone, N.2
  • 7
    • 0041814296 scopus 로고    scopus 로고
    • Quality of decision rules: Definitions and classification schemes for multiple rules
    • eds. G. Nakhaeizadeh and C. C. Taylor Jone Wiley & Sons Inc
    • I. Bruha, Quality of decision rules: Definitions and classification schemes for multiple rules, in Machine Learning and Statistics, The Interface, eds. G. Nakhaeizadeh and C. C. Taylor (Jone Wiley & Sons Inc. 1996).
    • (1996) Machine Learning and Statistics, The Interface
    • Bruha, I.1
  • 9
    • 33947706378 scopus 로고    scopus 로고
    • L. Cristofor and D. Simovici, Generating an informative cover for association rules, Technical Report TR-02-01, Department of Computer Science, University of Massachusetts at Boston, Boston, MA (2002).
    • L. Cristofor and D. Simovici, Generating an informative cover for association rules, Technical Report TR-02-01, Department of Computer Science, University of Massachusetts at Boston, Boston, MA (2002).
  • 12
    • 0005185992 scopus 로고    scopus 로고
    • Knowledge discovery and interestingness measures: A survey
    • Tech. Report 99-4, Department of Computer Science, University of Regina () 27 pages
    • R. J. Hilderman and H. J. Hamilton, Knowledge discovery and interestingness measures: A survey, Tech. Report 99-4, Department of Computer Science, University of Regina (1999) 27 pages.
    • (1999)
    • Hilderman, R.J.1    Hamilton, H.J.2
  • 13
    • 33744492809 scopus 로고    scopus 로고
    • A data warehouse/OLAP framework for web usage mining and business intelligence reporting
    • X. Hu and N. Cercone, "A data warehouse/OLAP framework for web usage mining and business intelligence reporting, Int. J. Intelligence Systems 19(7) (2004) 567-584.
    • (2004) Int. J. Intelligence Systems , vol.19 , Issue.7 , pp. 567-584
    • Hu, X.1    Cercone, N.2
  • 14
    • 2342605000 scopus 로고    scopus 로고
    • A new rough set model based on database systems
    • X. Hu, T. Y. Lin and J. Han, A new rough set model based on database systems, J. Fundamental Informatics 59(2-3) (2004) 135-152.
    • (2004) J. Fundamental Informatics , vol.59 , Issue.2-3 , pp. 135-152
    • Hu, X.1    Lin, T.Y.2    Han, J.3
  • 17
    • 32344441911 scopus 로고    scopus 로고
    • A maximum entropy web recommendation system: Combining collaborative and content features
    • Chicago, Illinois August
    • X. Jin, Y. Zhou and B. Mobasher, A maximum entropy web recommendation system: Combining collaborative and content features, in Proc. 11th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Chicago, Illinois (August 2005), pp. 612-617.
    • (2005) Proc. 11th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining , pp. 612-617
    • Jin, X.1    Zhou, Y.2    Mobasher, B.3
  • 20
  • 21
    • 33746227383 scopus 로고    scopus 로고
    • A sequence-element-based hierarchical clustering algorithm for categorical sequence data
    • S. Oh and J. Kim, A sequence-element-based hierarchical clustering algorithm for categorical sequence data, Int. J. Information Technology & Decision Making 4(1) (2005) 81-96.
    • (2005) Int. J. Information Technology & Decision Making , vol.4 , Issue.1 , pp. 81-96
    • Oh, S.1    Kim, J.2
  • 26
    • 0002877253 scopus 로고    scopus 로고
    • Discovery, analysis and presentation of strong rules
    • AAAI 1991, p
    • G. Piatetsky-Shapiro, Discovery, analysis and presentation of strong rules, Knowledge Discovery in Databases, AAAI (1991), p. 229.
    • Knowledge Discovery in Databases , pp. 229
    • Piatetsky-Shapiro, G.1
  • 27
    • 0002000090 scopus 로고    scopus 로고
    • Web usage mining: Discovery and applications of usage patterns from web data
    • J. Srivastava, R. Cooley, M. Deshpande and P. Tan, Web usage mining: Discovery and applications of usage patterns from web data, SIGKDD Explorations 1(2) (2000) 12-23.
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 12-23
    • Srivastava, J.1    Cooley, R.2    Deshpande, M.3    Tan, P.4
  • 31
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • Montreal, Canada
    • R. Srikant and R. Agrawal, Mining quantitative association rules in large relational tables, in Proc. ACM-SIGMOD Int. Conf. Management of Data, Montreal, Canada (1996) 1-12.
    • (1996) Proc. ACM-SIGMOD Int. Conf. Management of Data , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 33
    • 0037868122 scopus 로고    scopus 로고
    • Interestingness measures for association patterns: A perspective
    • Technical Report TR00-036, Department of Computer Science, University of Minnestota
    • P. Tan and V. Kumar, Interestingness measures for association patterns: A perspective", Technical Report TR00-036, Department of Computer Science, University of Minnestota (2000).
    • (2000)
    • Tan, P.1    Kumar, V.2
  • 35
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • H. Toivonen, Sampling large databases for association rules, in Proc. 22nd VLDB (1996).
    • (1996) Proc. 22nd VLDB
    • Toivonen, H.1
  • 36
    • 23944511670 scopus 로고    scopus 로고
    • Mining customer value: From association rules to direct marketing
    • K. Wang, S. Zhou, Q. Yang and J. Yeung, Mining customer value: From association rules to direct marketing, Data Mining and Knowledge Discovery 11(1) (2005) 57-79.
    • (2005) Data Mining and Knowledge Discovery , vol.11 , Issue.1 , pp. 57-79
    • Wang, K.1    Zhou, S.2    Yang, Q.3    Yeung, J.4
  • 41
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • January/February
    • M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine Learning Journal 42(1 /2) (January/February 2001), pp. 31-60.
    • (2001) Machine Learning Journal , vol.42 , Issue.1 2 , pp. 31-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.